3,024 research outputs found

    From Development To Evolution: The Re-Establishment Of The Alexander Kowalevsky Medal

    Get PDF
    The Saint Petersburg Society of Naturalists has reinstated the Alexander O. Kowalevsky Medal. This article announces the winners of the first medals and briefly reviews the achievements of A.O. Kowalevsky,the Russian comparative embryologist whose studies on amphioxus, tunicates and germ layer homologies pioneered evolutionary embryology and confirmed the evolutionary continuity between invertebrates and vertebrates. In re-establishing this international award, the Society is pleased to recognize both the present awardees and the memory of Kowalevsky, whose work pointed to that we now call evolutionary developmental biology

    Zero curvature representation for a new fifth-order integrable system

    Full text link
    In this brief note we present a zero-curvature representation for one of the new integrable system found by Mikhailov, Novikov and Wang in nlin.SI/0601046.Comment: 2 pages, LaTeX 2e, no figure

    X-Ray Fluorescence Determination of Trace Gold in an Ion-Exchange Resin

    Get PDF
    The use of portable X ray optics with a secondary radiator in the determination of trace gold in an ion exchange resin within the mass fraction range of 1–50 ppm is described. It is shown that the secondary radiator design with primary radiation filtering allows one to determine trace gold in an ion exchange resin when the mass fraction of gold is lower than 1 ppm

    Representations of sl(2,?) in category O and master symmetries

    Get PDF
    We show that the indecomposable sl(2,?)-modules in the Bernstein-Gelfand-Gelfand category O naturally arise for homogeneous integrable nonlinear evolution systems. We then develop a new approach called the O scheme to construct master symmetries for such integrable systems. This method naturally allows computing the hierarchy of time-dependent symmetries. We finally illustrate the method using both classical and new examples. We compare our approach to the known existing methods used to construct master symmetries. For new integrable equations such as a Benjamin-Ono-type equation, a new integrable Davey-Stewartson-type equation, and two different versions of (2+1)-dimensional generalized Volterra chains, we generate their conserved densities using their master symmetries

    Two ground-state modifications of quantum-dot beryllium

    Full text link
    Exact electronic properties of a system of four Coulomb-interacting two-dimensional electrons in a parabolic confinement are reported. We show that degenerate ground states of this system are characterized by qualitatively different internal electron-electron correlations, and that the formation of Wigner molecule in the strong-interaction regime is going on in essentially different ways in these ground states.Comment: 5 pages, incl 5 Figures and 2 Table

    Exact diagonalization of the Bohr Hamiltonian for rotational nuclei: Dynamical gamma softness and triaxiality

    Full text link
    Detailed quantitative predictions are obtained for phonon and multiphonon excitations in well-deformed rotor nuclei within the geometric framework, by exact numerical diagonalization of the Bohr Hamiltonian in an SO(5) basis. Dynamical gamma deformation is found to significantly influence the predictions through its coupling to the rotational motion. Basic signatures for the onset of rigid triaxial deformation are also obtained.Comment: 17 pages, 10 figures; to be published Phys. Rev.

    Turbulence and standing waves in oscillatory chemical reactions with global coupling

    Get PDF
    Using the model of the complex Ginzburg–Landau equation with global coupling, the influence of long‐range interactions on the turbulent state of oscillatory reaction–diffusion systems is investigated. Experimental realizations of such a system are, e.g., oscillatory reactions on single crystal surfaces where some of the phenomena we simulate have been observed experimentally. We find that strong global coupling suppresses turbulence by transforming it into a pattern of standing waves or into uniform oscillations. Weaker global coupling gives rise to an intermittent turbulent state which retains partial synchrony

    Enhanced graphene nonlinear response through geometrical plasmon focusing

    Get PDF
    We propose a simple approach to couple light into graphene plasmons and focus these excitations at focal spots of a size determined by the plasmon wavelength, thus producing high optical field enhancement that boosts the nonlinear response of the material. More precisely, we consider a graphene structure in which incident light is coupled to its plasmons at the carbon edges and subsequently focused on a spot of size comparable to the plasmon wavelength. We observe large confinement of graphene plasmons, materializing in small, intense focal spots, in which the extraordinary nonlinear response of this material leads to relatively intense harmonic generation. This result shows the potential of plasmon focusing in suitably edged graphene structures to produce large field confinement and nonlinear response without involving elaborated nanostructuring.Peer ReviewedPostprint (published version

    Observation of inter-edge magnetoplasmon mode in a degenerate two-dimensional electron gas

    Get PDF
    We study the propagation of edge magnetoplasmons by time-resolved current measurements in a sample which allows for selective detection of edge states in the quantum Hall regime. We observe two decoupled modes of edge and inter-edge magnetoplasmons at filling factors close to 3. From the analysis of the propagation velocities of each mode the internal spatial parameters of the edge structure are derived.Comment: 4 pages, 4 figures, submitte

    Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas

    Get PDF
    We experimentally study the group time delay for a light pulse propagating through hot Rb vapor in the presence of a strong coupling field in a Λ\Lambda configuration. We demonstrate that the ultra-slow pulse propagation is transformed into superluminal propagation as the one-photon detuning of the light increases due to the change in the transmission resonance lineshape. Negative group velocity as low as -c/10^6=-80 m/s is recorded. We also find that the advance time in the regime of the superluminal propagation grows linearly with increasing laser field power.Comment: 5 pages, 6 figure
    corecore