7,074 research outputs found
Salient sounds distort time perception and production
The auditory world is often cacophonous, with some sounds capturing attention and distracting us from our goals. Despite the universality of this experience, many questions remain about how and why sound captures attention, how rapidly behavior is disrupted, and how long this interference lasts. Here, we use a novel measure of behavioral disruption to test predictions made by models of auditory salience. Models predict that goal-directed behavior is disrupted immediately after points in time that feature a high degree of spectrotemporal change. We find that behavioral disruption is precisely time-locked to the onset of distracting sound events: Participants who tap to a metronome temporarily increase their tapping speed 750Â ms after the onset of distractors. Moreover, this response is greater for more salient sounds (larger amplitude) and sound changes (greater pitch shift). We find that the time course of behavioral disruption is highly similar after acoustically disparate sound events: Both sound onsets and pitch shifts of continuous background sounds speed responses at 750Â ms, with these effects dying out by 1,750Â ms. These temporal distortions can be observed using only data from the first trial across participants. A potential mechanism underlying these results is that arousal increases after distracting sound events, leading to an expansion of time perception, and causing participants to misjudge when their next movement should begin
Locking Local Oscillator Phase to the Atomic Phase via Weak Measurement
We propose a new method to reduce the frequency noise of a Local Oscillator
(LO) to the level of white phase noise by maintaining (not destroying by
projective measurement) the coherence of the ensemble pseudo-spin of atoms over
many measurement cycles. This scheme uses weak measurement to monitor the phase
in Ramsey method and repeat the cycle without initialization of phase and we
call, "atomic phase lock (APL)" in this paper. APL will achieve white phase
noise as long as the noise accumulated during dead time and the decoherence are
smaller than the measurement noise. A numerical simulation confirms that with
APL, Allan deviation is averaged down at a maximum rate that is proportional to
the inverse of total measurement time, tau^-1. In contrast, the current atomic
clocks that use projection measurement suppress the noise only down to the
level of white frequency, in which case Allan deviation scales as tau^-1/2.
Faraday rotation is one of the possible ways to realize weak measurement for
APL. We evaluate the strength of Faraday rotation with 171Yb+ ions trapped in a
linear rf-trap and discuss the performance of APL. The main source of the
decoherence is a spontaneous emission induced by the probe beam for Faraday
rotation measurement. One can repeat the Faraday rotation measurement until the
decoherence become comparable to the SNR of measurement. We estimate this
number of cycles to be ~100 cycles for a realistic experimental parameter.Comment: 18 pages, 7 figures, submitted to New Journal of Physic
A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years
Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.Peer reviewedPublisher PD
Thermal degradation of Cross-Linked Polyisoprene and Polychloroprene
Polyisoprene and polychloroprene have been cross-linked either in solution or in solid state using free radical initiators. In the comparable experimental conditions higher cross-linking density was observed in the solid state process. Independent of the cross-linking method, polychloroprene tended to give a higher gel content and cross-link density than does polyisoprene. Infrared characterization of the cross-linked materials showed cis-trans isomerization occurred in the polyisoprene initiated by benzoyl peroxide, whereas no isomerization was found in the samples initiated by dicumyl peroxide. Polyisoprene does not cross-link by heating in a thermal analyzer, whereas polychloroprene easily undergoes cross-linking in such conditions. Infrared spectroscopy showed that in the case of polyisoprene, rearrangements occur upon heating which lead to the formation of terminal double bonds, while polychloroprene loses hydrogen chlorine which leads to a conjugated structure. There is apparently some enhancement of the thermal and thermal oxidative stability of polyisoprene because of the cross-linking. Cross-linked polychloroprene is less thermally stable than the virgin polymer. Cross-linking promotes polymers charring in the main step of weight loss in air, which leads to enhanced transitory char
Confinement from new global defect structures
We investigate confinement from new global defect structures in three spatial
dimensions. The global defects arise in models described by a single real
scalar field, governed by special scalar potentials. They appear as
electrically, magnetically or dyonically charged structures. We show that they
induce confinement, when they are solutions of effective QCD-like field
theories in which the vacua are regarded as color dielectric media with an
anti-screening property. As expected, in three spatial dimensions the
monopole-like global defects generate the Coulomb potential as part of several
confining potentials.Comment: RevTex4, 7 pages, 1 figure. Version to appear in Eur. Phys. J.
Fragmentation pathways of nanofractal structures on surface
We present a detailed systematical theoretical analysis of the post-growth
processes occurring in nanofractals grown on surface. For this study we
developed a method which accounts for the internal dynamics of particles in a
fractal. We demonstrate that particle diffusion and detachment controls the
shape of the emerging stable islands on surface. We consider different
scenarios of fractal post-growth relaxation and analyze the time evolution of
the island's morphology. The results of our calculations are compared with
available experimental observations, and experiments in which the post-growth
relaxation of deposited nanostructures can be probed are suggested.Comment: 34 pages, 11 figure
Recommended from our members
Decision criterion dynamics in animals performing an auditory detection task
Classical signal detection theory attributes bias in perceptual decisions to a threshold criterion, against which sensory excitation is compared. The optimal criterion setting depends on the signal level, which may vary over time, and about which the subject is naĂŻve. Consequently, the subject must optimise its threshold by responding appropriately to feedback. Here a series of experiments was conducted, and a computational model applied, to determine how the decision bias of the ferret in an auditory signal detection task tracks changes in the stimulus level. The time scales of criterion dynamics were investigated by means of a yes-no signal-in-noise detection task, in which trials were grouped into blocks that alternately contained easy- and hard-to-detect signals. The responses of the ferrets implied both long- and short-term criterion dynamics. The animals exhibited a bias in favour of responding âyesâ during blocks of harder trials, and vice versa. Moreover, the outcome of each single trial had a strong influence on the decision at the next trial. We demonstrate that the single-trial and block-level changes in bias are a manifestation of the same criterion update policy by fitting a model, in which the criterion is shifted by fixed amounts according to the outcome of the previous trial and decays strongly towards a resting value. The apparent block-level stabilisation of bias arises as the probabilities of outcomes and shifts on single trials mutually interact to establish equilibrium. To gain an intuition into how stable criterion distributions arise from specific parameter sets we develop a Markov model which accounts for the dynamic effects of criterion shifts. Our approach provides a framework for investigating the dynamics of decisions at different timescales in other species (e.g., humans) and in other psychological domains (e.g., vision, memory
Auditory attention influences trajectories of symbolâspeech sound learning in children with and without dyslexia
The acquisition of letterâspeech sound correspondences is a fundamental process underlying reading development, one that could be influenced by several linguistic and domain-general cognitive factors. In the current study, we mimicked the first steps of this process by examining behavioral trajectories of audiovisual associative learning in 110 7- to 12-year-old children with and without dyslexia. Children were asked to learn the associations between eight novel symbols and native speech sounds in a brief training and subsequently read words and pseudowords written in the artificial orthography. We then investigated the influence of auditory attention as one of the putative domain-general factors influencing associative learning. To this aim, we assessed children with experimental measures of auditory sustained selective attention and interference control. Our results showed shallower learning trajectories in children with dyslexia, especially during the later phases of the training blocks. Despite this, children with dyslexia performed similarly to typical readers on the post-training reading tests using the artificial orthography. Better auditory sustained selective attention and interference control skills predicted greater response accuracy during training. Sustained selective attention was also associated with the ability to apply these novel correspondences in the reading tests. Although this result has the limitations of a correlational design, it denotes that poor attentional skills may constitute a risk during the early stages of reading acquisition, when children start to learn letterâspeech sound associations. Importantly, our findings underscore the importance of examining dynamics of learning in reading acquisition as well as individual differences in more domain-general attentional factors
Attentional modulation of neural sound tracking in children with and without dyslexia
Auditory selective attention forms an important foundation of children's learning by enabling the prioritisation and encoding of relevant stimuli. It may also influence reading development, which relies on metalinguistic skills including the awareness of the sound structure of spoken language. Reports of attentional impairments and speech perception difficulties in noisy environments in dyslexic readers are also suggestive of the putative contribution of auditory attention to reading development. To date, it is unclear whether non-speech selective attention and its underlying neural mechanisms are impaired in children with dyslexia and to which extent these deficits relate to individual reading and speech perception abilities in suboptimal listening conditions. In this EEG study, we assessed non-speech sustained auditory selective attention in 106 7-to-12-year-old children with and without dyslexia. Children attended to one of two tone streams, detecting occasional sequence repeats in the attended stream, and performed a speech-in-speech perception task. Results show that when children directed their attention to one stream, inter-trial-phase-coherence at the attended rate increased in fronto-central sites; this, in turn, was associated with better target detection. Behavioural and neural indices of attention did not systematically differ as a function of dyslexia diagnosis. However, behavioural indices of attention did explain individual differences in reading fluency and speech-in-speech perception abilities: both these skills were impaired in dyslexic readers. Taken together, our results show that children with dyslexia do not show group-level auditory attention deficits but these deficits may represent a risk for developing reading impairments and problems with speech perception in complex acoustic environments. Research Highlights: Non-speech sustained auditory selective attention modulates EEG phase coherence in children with/without dyslexia Children with dyslexia show difficulties in speech-in-speech perception Attention relates to dyslexic readersâ speech-in-speech perception and reading skills Dyslexia diagnosis is not linked to behavioural/EEG indices of auditory attention
- âŠ