6,916 research outputs found

    Observations by human subjects on radiation- induced light flashes in fast-neutron, X-ray, and positive-pion beams

    Get PDF
    Exposure of human subjects to fast neutron beam to determine cause of light flashes observed by astronauts on lunar mission

    Human visual response to nuclear particle exposures

    Get PDF
    Experiments with accelerated helium ions were performed in an effort to localize the site of initial radiation interactions in the eye that lead to light flash observations by astronauts during spaceflight. The character and efficiency of helium ion induction of visual sensations depended on the state of dark adaptation of the retina; also, the same events were seen with different efficiencies and details when particle flux density changed. It was concluded that fast particles cause interactions in the retina, particularly in the receptor layer, and thus give rise to the sensations of light flashes, streaks, and supernovae

    Dynamics of adaptive agents with asymmetric information

    Full text link
    We apply path-integral techniques to study the dynamics of agent-based models with asymmetric information structures. In particular, we devise a batch version of a model proposed originally by Berg et al. [Quant. Fin. 1 (2001) 203], and convert the coupled multi-agent processes into an effective-agent problem from which the dynamical order parameters in ergodic regimes can be derived self-consistently together with the corresponding phase structure. Our dynamical study complements and extends the available static theory. Results are confirmed by numerical simulations.Comment: minor revision of text, accepted by JSTA

    Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet

    Full text link
    We report the discovery of a transiting, Rp = 4.347+/-0.099REarth, circumbinary planet (CBP) orbiting the Kepler K+M Eclipsing Binary (EB) system KIC 12351927 (Kepler-413) every ~66 days on an eccentric orbit with ap = 0.355+/-0.002AU, ep = 0.118+/-0.002. The two stars, with MA = 0.820+/-0.015MSun, RA = 0.776+/-0.009RSun and MB = 0.542+/-0.008MSun, RB = 0.484+/-0.024RSun respectively revolve around each other every 10.11615+/-0.00001 days on a nearly circular (eEB = 0.037+/-0.002) orbit. The orbital plane of the EB is slightly inclined to the line of sight (iEB = 87.33+/-0.06 degrees) while that of the planet is inclined by ~2.5 degrees to the binary plane at the reference epoch. Orbital precession with a period of ~11 years causes the inclination of the latter to the sky plane to continuously change. As a result, the planet often fails to transit the primary star at inferior conjunction, causing stretches of hundreds of days with no transits (corresponding to multiple planetary orbital periods). We predict that the next transit will not occur until 2020. The orbital configuration of the system places the planet slightly closer to its host stars than the inner edge of the extended habitable zone. Additionally, the orbital configuration of the system is such that the CBP may experience Cassini-States dynamics under the influence of the EB, in which the planet's obliquity precesses with a rate comparable to its orbital precession. Depending on the angular precession frequency of the CBP, it could potentially undergo obliquity fluctuations of dozens of degrees (and complex seasonal cycles) on precession timescales.Comment: 48 pages, 13 figure

    Effects of noise and confidence thresholds in nominal and metric Axelrod dynamics of social influence

    Full text link
    We study the effects of bounded confidence thresholds and of interaction and external noise on Axelrod's model of social influence. Our study is based on a combination of numerical simulations and an integration of the mean-field Master equation describing the system in the thermodynamic limit. We find that interaction thresholds affect the system only quantitatively, but that they do not alter the basic phase structure. The known crossover between an ordered and a disordered state in finite systems subject to external noise persists in models with general confidence threshold. Interaction noise here facilitates the dynamics and reduces relaxation times. We also study Axelrod systems with metric features, and point out similarities and differences compared to models with nominal features. Metric features are used to demonstrate that a small group of extremists can have a significant impact on the opinion dynamics of a population of Axelrod agents.Comment: 15 pages, 12 figure

    Stationary states of a spherical Minority Game with ergodicity breaking

    Full text link
    Using generating functional and replica techniques, respectively, we study the dynamics and statics of a spherical Minority Game (MG), which in contrast with a spherical MG previously presented in J.Phys A: Math. Gen. 36 11159 (2003) displays a phase with broken ergodicity and dependence of the macroscopic stationary state on initial conditions. The model thus bears more similarity with the original MG. Still, all order parameters including the volatility can computed in the ergodic phases without making any approximations. We also study the effects of market impact correction on the phase diagram. Finally we discuss a continuous-time version of the model as well as the differences between on-line and batch update rules. Our analytical results are confirmed convincingly by comparison with numerical simulations. In an appendix we extend the analysis of the earlier spherical MG to a model with general time-step, and compare the dynamics and statics of the two spherical models.Comment: 26 pages, 8 figures; typo correcte

    Random replicators with asymmetric couplings

    Full text link
    Systems of interacting random replicators are studied using generating functional techniques. While replica analyses of such models are limited to systems with symmetric couplings, dynamical approaches as presented here allow specifically to address cases with asymmetric interactions where there is no Lyapunov function governing the dynamics. We here focus on replicator models with Gaussian couplings of general symmetry between p>=2 species, and discuss how an effective description of the dynamics can be derived in terms of a single-species process. Upon making a fixed point ansatz persistent order parameters in the ergodic stationary states can be extracted from this process, and different types of phase transitions can be identified and related to each other. We discuss the effects of asymmetry in the couplings on the order parameters and the phase behaviour for p=2 and p=3. Numerical simulations verify our theory. For the case of cubic interactions numerical experiments indicate regimes in which only a finite number of species survives, even when the thermodynamic limit is considered.Comment: revised version, removed some mathematical parts, discussion of negatively correlated couplings added, figures adde

    Statistical mechanics and stability of a model eco-system

    Full text link
    We study a model ecosystem by means of dynamical techniques from disordered systems theory. The model describes a set of species subject to competitive interactions through a background of resources, which they feed upon. Additionally direct competitive or co-operative interaction between species may occur through a random coupling matrix. We compute the order parameters of the system in a fixed point regime, and identify the onset of instability and compute the phase diagram. We focus on the effects of variability of resources, direct interaction between species, co-operation pressure and dilution on the stability and the diversity of the ecosystem. It is shown that resources can be exploited optimally only in absence of co-operation pressure or direct interaction between species.Comment: 23 pages, 13 figures; text of paper modified, discussion extended, references adde

    Statistical Mechanics of Dilute Batch Minority Games with Random External Information

    Full text link
    We study the dynamics and statics of a dilute batch minority game with random external information. We focus on the case in which the number of connections per agent is infinite in the thermodynamic limit. The dynamical scenario of ergodicity breaking in this model is different from the phase transition in the standard minority game and is characterised by the onset of long-term memory at finite integrated response. We demonstrate that finite memory appears at the AT-line obtained from the corresponding replica calculation, and compare the behaviour of the dilute model with the minority game with market impact correction, which is known to exhibit similar features.Comment: 22 pages, 6 figures, text modified, references updated and added, figure added, typos correcte

    Minority games, evolving capitals and replicator dynamics

    Get PDF
    We discuss a simple version of the Minority Game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylised facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated Minority Games with dynamical capitals and several trading strategies per agent.Comment: 19 pages, 7 figure
    corecore