3,830 research outputs found
Design of Spacecraft Formation Orbits Relative to a Stabilized Trajectory
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76533/1/AIAA-8433-932.pd
Critical behavior of the 3-state Potts model on Sierpinski carpet
We study the critical behavior of the 3-state Potts model, where the spins
are located at the centers of the occupied squares of the deterministic
Sierpinski carpet. A finite-size scaling analysis is performed from Monte Carlo
simulations, for a Hausdorff dimension . The phase
transition is shown to be a second order one. The maxima of the susceptibility
of the order parameter follow a power law in a very reliable way, which enables
us to calculate the ratio of the exponents . We find that the
scaling corrections affect the behavior of most of the thermodynamical
quantities. However, the sequence of intersection points extracted from the
Binder's cumulant provides bounds for the critical temperature. We are able to
give the bounds for the exponent as well as for the ratio of the
exponents , which are compatible with the results calculated from
the hyperscaling relation.Comment: 13 pages, 4 figure
The Carnegie Supernova Project I: methods to estimate host-galaxy reddening of stripped-envelope supernovae
We aim to improve upon contemporary methods to estimate host-galaxy reddening
of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova
Project (CSP-I) SE SNe photometry data release, consisting of nearly three
dozen objects, is used to identify a minimally reddened sub-sample for each
traditionally defined spectroscopic sub-types (i.e, SNe~IIb, SNe~Ib, SNe~Ic).
Inspection of the optical and near-infrared (NIR) colors and color evolution of
the minimally reddened sub-samples reveals a high degree of homogeneity,
particularly between 0d to +20d relative to B-band maximum. This motivated the
construction of intrinsic color-curve templates, which when compared to the
colors of reddened SE SNe, yields an entire suite of optical and NIR color
excess measurements. Comparison of optical/optical vs. optical/NIR color excess
measurements indicates the majority of the CSP-I SE SNe suffer relatively low
amounts of reddening and we find evidence for different R_(V)^(host) values
among different SE SN. Fitting the color excess measurements of the seven most
reddened objects with the Fitzpatrick (1999) reddening law model provides
robust estimates of the host visual-extinction A_(V)^(host) and R_(V)^(host).
In the case of the SE SNe with relatively low amounts of reddening, a preferred
value of R_(V)^(host) is adopted for each sub-type, resulting in estimates of
A_(V)^(host) through Fitzpatrick (1999) reddening law model fits to the
observed color excess measurements. Our analysis suggests SE SNe reside in
galaxies characterized by a range of dust properties. We also find evidence SNe
Ic are more likely to occur in regions characterized by larger R_(V)^(host)
values compared to SNe IIb/Ib and they also tend to suffer more extinction.
These findings are consistent with work in the literature suggesting SNe Ic
tend to occur in regions of on-going star formation.Comment: Abstract abridged to fit allowed limit. Resubmitted to A&A, 34 pages,
19 figures, 6 tables. Constructive comments welcome
Experimental Studies of Low-field Landau Quantization in Two-dimensional Electron Systems in GaAs/AlGaAs Heterostructures
By applying a magnetic field perpendicular to GaAs/AlGaAs two-dimensional
electron systems, we study the low-field Landau quantization when the thermal
damping is reduced with decreasing the temperature. Magneto-oscillations
following Shubnikov-de Haas (SdH) formula are observed even when their
amplitudes are so large that the deviation to such a formula is expected. Our
experimental results show the importance of the positive magneto-resistance to
the extension of SdH formula under the damping induced by the disorder.Comment: 9 pages, 3 figure
Resting-state magnetoencephalographic oscillatory connectivity to identify patients with chronic migraine using machine learning
To identify and validate the neural signatures of resting-state oscillatory connectivity for chronic migraine (CM), we used machine learning techniques to classify patients with CM from healthy controls (HC) and patients with other pain disorders. The cross-sectional study obtained resting-state magnetoencephalographic data from 240 participants (70 HC, 100 CM, 35 episodic migraine [EM], and 35 fibromyalgia [FM]). Source-based oscillatory connectivity of relevant cortical regions was calculated to determine intrinsic connectivity at 1–40 Hz. A classification model that employed a support vector machine was developed using the magnetoencephalographic data to assess the reliability and generalizability of CM identification. In the findings, the discriminative features that differentiate CM from HC were principally observed from the functional interactions between salience, sensorimotor, and part of the default mode networks. The classification model with these features exhibited excellent performance in distinguishing patients with CM from HC (accuracy ≥ 86.8%, area under the curve (AUC) ≥ 0.9) and from those with EM (accuracy: 94.5%, AUC: 0.96). The model also achieved high performance (accuracy: 89.1%, AUC: 0.91) in classifying CM from other pain disorders (FM in this study). These resting-state magnetoencephalographic electrophysiological features yield oscillatory connectivity to identify patients with CM from those with a different type of migraine and pain disorder, with adequate reliability and generalizability
Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations
We investigate the solvent-accessible area method by means of Metropolis
simulations of the brain peptide Met-Enkephalin at 300. For the energy
function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The
simulations are compared with one another, with simulations with a distance
dependent electrostatic permittivity , and with vacuum
simulations (). Parallel tempering and the biased Metropolis
techniques RM are employed and their performance is evaluated. The measured
observables include energy and dihedral probability densities (pds), integrated
autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be
unsuitable for these simulations. For all other systems selected configurations
are minimized in search of the global energy minima, which are found for the
vacuum and the system, but for none of the ASP models. Other
observables show a remarkable dependence on the ASPs. In particular, we find
three ASP sets for which the autocorrelations at 300K are considerably
smaller than for vacuum simulations.Comment: 10 pages and 8 figure
Fisher Renormalization for Logarithmic Corrections
For continuous phase transitions characterized by power-law divergences,
Fisher renormalization prescribes how to obtain the critical exponents for a
system under constraint from their ideal counterparts. In statistical
mechanics, such ideal behaviour at phase transitions is frequently modified by
multiplicative logarithmic corrections. Here, Fisher renormalization for the
exponents of these logarithms is developed in a general manner. As for the
leading exponents, Fisher renormalization at the logarithmic level is seen to
be involutory and the renormalized exponents obey the same scaling relations as
their ideal analogs. The scheme is tested in lattice animals and the Yang-Lee
problem at their upper critical dimensions, where predictions for logarithmic
corrections are made.Comment: 10 pages, no figures. Version 2 has added reference
Comprehensive Observations of the Bright and Energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar Mass White Dwarf Explosion
We present UV through NIR broad-band photometry, and optical and NIR
spectroscopy of Type Iax supernova 2012Z. The data set consists of both early
and late-time observations, including the first late phase NIR spectrum
obtained for a spectroscopically classified SN Iax. Simple model calculations
of its bolometric light curve suggest SN 2012Z produced ~0.3 M_sun of (56)Ni,
ejected about a Chandrasekhar mass of material, and had an explosion energy of
~10^51 erg, making it one of the brightest and most energetic SN Iax yet
observed. The late phase NIR spectrum of SN 2012Z is found to broadly resemble
similar epoch spectra of normal SNe Ia; however, like other SNe Iax,
corresponding visual-wavelength spectra differ substantially compared to all
supernova types. Constraints from the distribution of IMEs, e.g. silicon and
magnesium, indicate that the outer ejecta did not experience significant mixing
during or after burning, and the late phase NIR line profiles suggests most of
the (56)Ni is produced during high density burning. The various observational
properties of SN 2012Z are found to be consistent with the theoretical
expectations of a Chandrasekhar mass white dwarf progenitor that experiences a
pulsational delayed detonation, which produced several tenths of a solar mass
of (56)Ni during the deflagration burning phase and little (or no) (56)Ni
during the detonation phase. Within this scenario only a moderate amount of
Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase
of the pulsation, and the layered structure of the IMEs is a product of the
subsequent denotation phase. The fact that the SNe Iax population does not
follow a tight brightness-decline relation similar to SNe Ia can then be
understood in the framework of variable amounts of mixing during pulsational
rebound and variable amounts of (56)Ni production during the early subsonic
phase of expansion.Comment: Submitted to A&A, manuscript includes response to referee's comments.
39 pages, including 16 figures, 9 table
Optical and near infrared observations of SN 2014ck: an outlier among the Type Iax supernovae
We present a comprehensive set of optical and near-infrared photometric and
spectroscopic observations for SN 2014ck, extending from pre-maximum to six
months later. These data indicate that SN 2014ck is photometrically nearly
identical to SN 2002cx, which is the prototype of the class of peculiar
transients named SNe Iax. Similar to SN 2002cx, SN 2014ck reached a peak
brightness mag, with a post-maximum decline-rate mag. However, the spectroscopic sequence shows
similarities with SN 2008ha, which was three magnitudes fainter and faster
declining. In particular, SN 2014ck exhibits extremely low ejecta velocities,
km s at maximum, which are close to the value measured for
SN 2008ha and half the value inferred for SN 2002cx. The bolometric light curve
of SN 2014ck is consistent with the production of of Ni. The spectral identification of several iron-peak
features, in particular Co II lines in the NIR, provides a clear link to SNe
Ia. Also, the detection of narrow Si, S and C features in the pre-maximum
spectra suggests a thermonuclear explosion mechanism. The late-phase spectra
show a complex overlap of both permitted and forbidden Fe, Ca and Co lines. The
appearance of strong [Ca~II] 7292, 7324 again mirrors the
late-time spectra of SN 2008ha and SN 2002cx. The photometric resemblance to SN
2002cx and the spectral similarities to SN 2008ha highlight the peculiarity of
SN 2014ck, and the complexity and heterogeneity of the SNe Iax class.Comment: MNRAS Accepted 2016 March 22. Received 2016 March
- …