94,774 research outputs found

    A concentrator for static magnetic field

    Full text link
    We propose a compact passive device as a super-concentrator to create an extremely high uniform static magnetic field over 50T in a large two-dimensional free space from a weak background magnetic field. Such an amazing thing becomes possible for the first time, thanks to space-folded transformation and metamaterials for static magnetic fields. Finite element method (FEM) is utilized to verify the performance of the proposed device

    Transforming magnets

    Full text link
    Based on the form-invariant of Maxwell's equations under coordinate transformations, we extend the theory of transformation optics to transformation magneto-statics, which can design magnets through coordinate transformations. Some novel DC magnetic field illusions created by magnets (e.g. shirking magnets, cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our research will open a new door to designing magnets and controlling DC magnetic fields

    Inhomogeneity-Induced Casimir Transport of Nanoparticles

    Full text link
    This letter proposes a scheme for transporting nanoparticles immersed in a fluid, relying on quantum vacuum fluctuations. The mechanism lies in the inhomogeneity-induced lateral Casimir force between a nanoparticle and a gradient metasurface, and the relaxation of the conventional Dzyaloshinski\v{i}-Lifshitz-Pitaevski\v{i} constraint, which allows quantum levitation for a broader class of material configurations. The velocity for a nanosphere levitated above a grating is calculated and can be up to a few microns per minute. The Born approximation gives general expressions for the Casimir energy which reveal size-selective transport. For any given metasurface, a certain particle-metasurface separation exists where the transport velocity peaks, forming a "Casimir passage". The sign and strength of the Casimir interactions can be tuned by the shapes of liquid-air menisci, potentially allowing real-time control of an otherwise passive force, and enabling interesting on-off or directional switching of the transport process.Comment: 7 figure

    Cluster dynamical mean field theory of quantum phases on a honeycomb lattice

    Full text link
    We have studied the ground state of the half-filled Hubbard model on a honeycomb lattice by performing the cluster dynamical mean field theory calculations with exact diagonalization on the cluster-impurity solver. Through using elaborate numerical analytic continuation, we identify the existence of a `spin liquid' from the on-site interaction U=0 to UcU_c (between 4.6t4.6t and 4.85t4.85t) with a smooth crossover correspondingly from the charge fluctuation dominating phase into the charge correlation dominating phase. The semi-metallic state exits only at U=0. We further find that the magnetic phase transition at UcU_c from the `spin liquid' to the N\'{e}el antiferromagnetic Mott insulating phase is a first-order quantum phase transition. We also show that the charge fluctuation plays a substantial role on keeping the `spin liquid' phase against the emergence of a magnetic order.Comment: 5 pages and 8 figure

    Inhomogeneity-related cutoff dependence of the Casimir energy and stress

    Full text link
    The cutoff dependence of the Casimir energy and stress is studied using the Green's function method for a system that is piecewise-smoothly inhomogeneous along one dimension. The asymptotic cylinder kernel expansions of the energy and stress are obtained, with some extra cutoff terms that are induced by the inhomogeneity. Introducing interfaces to the system one by one shows how those cutoff terms emerge and illuminates their physical interpretations. Based on that, we propose a subtraction scheme to address the problem of the remaining cutoff dependence in the Casimir stress in an inhomogeneous medium, and show that the nontouching Casimir force between two separated bodies is cutoff independent. The cancellation of the electric and magnetic contributions to the surface divergence near a perfectly conducting wall is found to be incomplete in the case of inhomogeneity.Comment: 10 pages, 1 figur

    On the theory of SODAR measurement techniques (final reporting on WP1, EU WISE project NNE5-2001-297)

    Get PDF
    The need for alternative means to measure the wind speed for wind energy purposes has increased with the increase of the size of wind turbines. The cost and the technical difficulties for performing wind speed measurements has also increased with the size of the wind turbines, since it is demanded that the wind speed has to be measured at the rotor center of the turbine and the size of both the rotor and the hub height have grown following the increase in the size of the wind turbines. The SODAR (SOund Detection And Ranging) is an alternative to the use of cup anemometers and offers the possibility of measuring both the wind speed distribution with height and the wind direction. At the same time the SODAR presents a number of serious drawbacks such as the low number of measurements per time period, the dependence of the ability to measure on the atmospheric conditions and the difficulty of measuring at higher wind speeds due to either background noise or the neutral condition of the atmosphere. Within the WISE project (EU project number NNE5-2001-297), a number of work packages have been defined in order to deal with the SODAR. The present report is the result of the work package 1. Within this package the objective has been to present and achieve the following: - An accurate theoretic model that describes all the relevant aspects of the interaction of the sound beam with the atmosphere in the level of detail needed for wind energy applications. - Understanding of dependence of SODAR performance on hard- and software configuration. - Quantification of principal difference between SODAR wind measurement and wind speed measurements with cup anemometers with regard to power performance measurements. The work associated to the above is described in the work program as follows: a) Draw up an accurate model of the theoretic background of the SODAR. The necessary depth is reached when the influences of various variables in the model on the accuracy of the measurement have been assessed. b) Describe the general algorithm SODAR uses for sending the beam and measuring the reflections. Describe the influence of various settings on the working of the algorithm. c) Using the data set from work package two analyse the differences between point measurements and profile measurements. All the above issues are addressed in the following repor

    Structural and vibrational properties of two-dimensional MnxOy\rm Mn_xO_y nanolayers on Pd(100)

    Full text link
    Using different experimental techniques combined with density functional based theoretical methods we have explored the formation of interface-stabilized manganese oxide structures grown on Pd(100) at (sub)monolayer coverage. Amongst the multitude of phases experimentally observed we focus our attention on four structures which can be classified into two distinct regimes, characterized by different building blocks. Two oxygen-rich phases are described in terms of MnO(111)-like O-Mn-O trilayers, whereas the other two have a lower oxygen content and are based on a MnO(100)-like monolayer structure. The excellent agreement between calculated and experimental scanning tunneling microscopy images and vibrational electron energy loss spectra allows for a detailed atomic description of the explored models.Comment: 14 pages, 11 figure

    Quantum Helicity Entropy of Moving Bodies

    Full text link
    Lorentz transformation of the reduced helicity density matrix for a massive spin 1/2 particle is investigated in the framework of relativistic quantum information theory for the first time. The corresponding helicity entropy is calculated, which shows no invariant meaning as that of spin. The variation of the helicity entropy with the relative speed of motion of inertial observers, however, differs significantly from that of spin due to their distinct transformation behaviors under the action of Lorentz group. This novel and odd behavior unique to the helicity may be readily detected by high energy physics experiments. The underlying physical explanations are also discussed.Comment: version to appear in Journal of Physics A as a Fast Track Communicatio

    BEC-BCS Crossover in the Nambu--Jona-Lasinio Model of QCD

    Get PDF
    The BEC-BCS crossover in QCD at finite baryon and isospin chemical potentials is investigated in the Nambu--Jona-Lasinio model. The diquark condensation in two color QCD and the pion condensation in real QCD would undergo a BEC-BCS crossover when the corresponding chemical potential increases. We determined the crossover chemical potential as well as the BEC and BCS regions. The crossover is not triggered by increasing the strength of attractive interaction among quarks but driven by changing the charge density. The chiral symmetry restoration at finite temperature and density plays an important role in the BEC-BCS crossover. For real QCD, strong couplings in diquark and vector meson channels can induce a diquark BEC-BCS crossover in color superconductor, and in the BEC region the chromomagnetic instability is fully cured and the ground state is a uniform phase.Comment: 18 pages, 15 figures. V2: typos corrected, references added. V3: typos in Appendix B correcte

    The distribution of species range size: a stochastic process

    Get PDF
    The major role played by environmental factors in determining the geographical range sizes of species raises the possibility of describing their long-term dynamics in relatively simple terms, a goal which has hitherto proved elusive. Here we develop a stochastic differential equation to describe the dynamics of the range size of an individual species based on the relationship between abundance and range size, derive a limiting stationary probability model to quantify the stochastic nature of the range size for that species at steady state, and then generalize this model to the species-range size distribution for an assemblage. The model fits well to several empirical datasets of the geographical range sizes of species in taxonomic assemblages, and provides the simplest explanation of species-range size distributions to date
    corecore