555 research outputs found

    Quantum-well states in ultrathin Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Ag(111) films were deposited at room temperature onto H-passivated Si(111)-(1x1) substrates, and subsequently annealed at 300 C. An abrupt non-reactive Ag/Si interface is formed, and very uniform non-strained Ag(111) films of 6-12 monolayers have been grown. Angle resolved photoemission spectroscopy has been used to study the valence band electronic properties of these films. Well-defined Ag sp quantum-well states (QWS) have been observed at discrete energies between 0.5-2eV below the Fermi level, and their dispersions have been measured along the GammaK, GammaMM'and GammaL symmetry directions. QWS show a parabolic bidimensional dispersion, with in-plane effective mass of 0.38-0.50mo, along the GammaK and GammaMM' directions, whereas no dispersion has been found along the GammaL direction, indicating the low-dimensional electronic character of these states. The binding energy dependence of the QWS as a function of Ag film thickness has been analyzed in the framework of the phase accumulation model. According to this model, a reflectivity of 70% has been estimated for the Ag-sp states at the Ag/H/Si(111)-(1x1) interface.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Silver films were deposited at room temperature onto H-passivated Si(111) surfaces. Their electronic properties have been analyzed by angle-resolved photoelectron spectroscopy. Submonolayer films were semiconducting and the onset of metallization was found at a Ag coverage of \sim0.6 monolayers. Two surface states were observed at Γˉ\bar{\Gamma}-point in the metallic films, with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron angular distribution at the Fermi level in these films, a cross-sectional cut of the Fermi surface was obtained. The Fermi vector determined along different symmetry directions and the photoelectron lifetime of states at the Fermi level are quite close to those expected for Ag single crystal. In spite of this concordance, the Fermi surface reflects a sixfold symmetry rather than the threefold symmetry of Ag single crystal. This behavior was attributed to the fact that these Ag films are composed by two domains rotated 60o^o.Comment: 9 pages, 8 figures, submitted to Physical Review

    Two-domains bulklike Fermi surface of Ag films deposited onto Si(111)-(7x7)

    Full text link
    Thick metallic silver films have been deposited onto Si(111)-(7x7) substrates at room temperature. Their electronic properties have been studied by using angle resolved photoelectron spectroscopy (ARPES). In addition to the electronic band dispersion along the high-symmetry directions, the Fermi surface topology of the grown films has been investigated. Using ARPES, the spectral weight distribution at the Fermi level throughout large portions of the reciprocal space has been determined at particular perpendicular electron-momentum values. Systematically, the contours of the Fermi surface of these films reflected a sixfold symmetry instead of the threefold symmetry of Ag single crystal. This loss of symmetry has been attributed to the fact that these films appear to be composed by two sets of domains rotated 60o^o from each other. Extra, photoemission features at the Fermi level were also detected, which have been attributed to the presence of surface states and \textit{sp}-quantum states. The dimensionality of the Fermi surface of these films has been analyzed studying the dependence of the Fermi surface contours with the incident photon energy. The behavior of these contours measured at particular points along the Ag Γ\GammaL high-symmetry direction puts forward the three-dimensional character of the electronic structure of the films investigated.Comment: 10 pages, 12 figures, submitted to Physical Review

    Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation

    Full text link
    To help provide insight into the remarkable catalytic behavior of the oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface oxygen, and structures involving both on-surface and sub-surface oxygen, as well as oxide-like structures at the Ag(111) surface have been studied for a wide range of coverages and adsorption sites using density-functional theory. Adsorption on the surface in fcc sites is energetically favorable for low coverages, while for higher coverage a thin surface-oxide structure is energetically favorable. This structure has been proposed to correspond to the experimentally observed (4x4) phase. With increasing O concentrations, thicker oxide-like structures resembling compressed Ag2O(111) surfaces are energetically favored. Due to the relatively low thermal stability of these structures, and the very low sticking probability of O2 at Ag(111), their formation and observation may require the use of atomic oxygen (or ozone, O3) and low temperatures. We also investigate diffusion of O into the sub-surface region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the adsorption of atomic oxygen and ozone-like species. The present studies, together with our earlier investigations of on-surface and surface-substitutional adsorption, provide a comprehensive picture of the behavior and chemical nature of the interaction of oxygen and Ag(111), as well as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p

    Sporting equality and gender neutrality in korfball

    Get PDF
    This paper explores the extent to which korfball can be considered egalitarian. The intention of this research was to use ethnographic methods to discover the ways in which gender was negotiated, challenged or recreated in a junior korfball setting and examine to what extent korfball provided an opportunity to promote gender egalitarianism. Analysis of the data incorporated a broad Foucauldian lens and subsequently revealed that sex equality was visible to some degree in the junior korfball space. From observations and interviews it was clear that male domination was rarely evident when considering the vocal nature of the game, the physicality and competitiveness of players, or their general ability and skill, yet when interviewed players still constructed gender in traditional ways. Nevertheless, korfball was seen to offer a space where there were possibilities for sporting equality although the influence that the sport had beyond the court was less apparent

    Implementation of an all-electron GW approximation based on the PAW method without plasmon pole approximation: application to Si, SiC, AlAs, InAs, NaH and KH

    Full text link
    A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pole model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH and KH. To illustrate the novelty of the method the real and imaginary part of the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the GWA results are compared with other calculations, highlighting that all-electron GWA results can differ markedly from those based on pseudopotential approaches.Comment: 11pages,3figures, submitted to PR
    corecore