50 research outputs found

    Groene groei: Investeren in biodiversiteit en natuurlijke hulpbronnen

    Get PDF
    Dit is het eindrapport van de Taskforce Biodiversiteit en Natuurlijke Hulpbronnen. Onder de titel Groene Groei, investeren in biodiversiteit en natuurlijke hulpbronnen pleit de Taskforce voor een omslag naar een economie die gebaseerd is op de draagkracht van de aarde. Daarvoor moet in 2020 biodiversiteitverlies tot staan gebracht zijn en in 2030 onze ecologische voetafdruk zijn gehalveerd. Uiteindelijk doel voor de Taskforce Biodiversiteit en Natuurlijke hulpbronnen is een wereld met veerkrachtige ecosystemen waarin voldoende voedsel, water, energie en bescherming is voor iedereen

    Complex regional pain syndrome - phenotypic characteristics and potential biomarkers

    Get PDF
    Complex regional pain syndrome (CRPS) is a pain condition that usually affects a single limb, often following an injury. The underlying pathophysiology seems to be complex and probably varies between patients. Clinical diagnosis is based on internationally agreed-upon criteria, which consider the reported symptoms, presence of signs and exclusion of alternative causes. Research into CRPS biomarkers to support patient stratification and improve diagnostic certainty is an important scientific focus, and recent progress in this area provides an opportunity for an up-to-date topical review of measurable disease-predictive, diagnostic and prognostic parameters. Clinical and biochemical attributes of CRPS that may aid diagnosis and determination of appropriate treatment are delineated. Findings that predict the development of CRPS and support the diagnosis include trauma-related factors, neurocognitive peculiarities, psychological markers, and local and systemic changes that indicate activation of the immune system. Analysis of signatures of non-coding microRNAs that could predict the treatment response represents a new line of research. Results from the past 5 years of CRPS research indicate that a single marker for CRPS will probably never be found; however, a range of biomarkers might assist in clinical diagnosis and guide prognosis and treatment

    Interventional therapy in Complex Regional Pain Syndrome type 1 : predicting the outcome

    Get PDF

    Glia in Drosophila behavior

    No full text
    Glial cells constitute about 10 % of the Drosophila nervous system. The development of genetic and molecular tools has helped greatly in defining different types of glia. Furthermore, considerable progress has been made in unraveling the mechanisms that control the development and differentiation of Drosophila glia. By contrast, the role of glia in adult Drosophila behavior is not well understood. We here summarize recent work describing the role of glia in normal behavior and in Drosophila models for neurological and behavioral disorders.status: publishe

    High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV

    Get PDF
    Contains fulltext : 125661.pdf (publisher's version ) (Open Access)Homeostatic regulation of serotonin (5-HT) concentration is critical for "normal" topographical organization and development of thalamocortical (TC) afferent circuits. Down-regulation of the serotonin transporter (SERT) and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1). Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT(-/-)) rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i) the TC projections of the ventroposteromedial thalamic nucleus toward S1, (ii) the general barrel-field pattern, and (iii) the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 [spiny stellate (SpSt) and pyramidal cells]. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections toward the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT(-/-) rats. In layer IV, both excitatory SpSt and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV SpSt cells gave rise to a prominent projection toward the infragranular layer Vb. Our findings point to a structural and functional reorganization of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel cortex
    corecore