10 research outputs found

    Influence of wearing hearing aids on speech perception in normal-hearing adults

    No full text

    Charge separation and isolation in strong water droplet impacts.

    No full text
    Charge separation in condensed matter after strong impacts is a general and intriguing phenomenon in nature, which is often identified and described but not necessarily well understood in terms of a quantitative mechanistic picture. Here we show that charge separation naturally occurs if water droplets/clusters or ice particles with embedded charge carriers, e.g., ions, encounter a high energy impact with subsequent dispersion – even if the involved kinetic energy is significantly below the molecular ionization energy. We find that for low charge carrier concentrations (c < 0.01 mol L−1) a simple statistical Poisson model describes the charge distribution in the resulting molecular “fragments” or aggregates. At higher concentrations Coulomb interactions between the charge carriers become relevant, which we describe by a Monte Carlo approach. Our models are compared to experimental data for strong (laser) impacts on liquid micro beams and discussed for the charge generation in cluster-impact mass spectrometry on cosmic dust detectors where particle kinetic energies are below the plasma threshold. Taken together, a simple and intuitive but quantitative microscopic model is obtained, which may contribute to the understanding of a larger range of phenomena related to charge generation and separation in nature

    Hydrogen bond dynamics of superheated water and methanol by ultrafast IR-pump and EUV-photoelectron probe spectroscopy.

    No full text
    Supercritical water and methanol have recently drawn much attention in the field of green chemistry. It is crucial to an understanding of supercritical solvents to know their dynamics and to what extent hydrogen (H) bonds persist in these fluids. Here, we show that with femtosecond infrared (IR) laser pulses water and methanol can be heated to temperatures near and above their critical temperature Tc and their molecular dynamics can be studied via ultrafast photoelectron spectroscopy at liquid jet interfaces with high harmonics radiation. As opposed to previous studies, the main focus here is the comparison between the hydrogen bonded systems of methanol and water and their interpretation by theory. Superheated water initially forms a dense hot phase with spectral features resembling those of monomers in gas phase water. On longer timescales, this phase was found to build hot aggregates, whose size increases as a function of time. In contrast, methanol heated to temperatures near Tc initially forms a broad distribution of aggregate sizes and some gas. These experimental features are also found and analyzed in extended molecular dynamics simulations. Additionally, the simulations enabled us to relate the origin of the different behavior of these two hydrogen-bonded liquids to the nature of the intermolecular potentials. The combined experimental and theoretical approach delivers new insights into both superheated phases and may contribute to understand their different chemical reactivities

    Macromolecular organic compounds from the depths of Enceladus

    No full text
    Abstract Saturn’s moon Enceladus harbours a global water ocean¹, which lies under an ice crust and above a rocky core². Through warm cracks in the crust³ a cryo-volcanic plume ejects ice grains and vapour into space⁴–⁷ that contain materials originating from the ocean⁸,⁹. Hydrothermal activity is suspected to occur deep inside the porous core¹⁰–¹², powered by tidal dissipation¹³. So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material⁶,¹⁴,¹⁵. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus’ organic inventory in enhanced concentrations
    corecore