777 research outputs found

    Everything Hits at Once: How Remote Rainfall Matters for the Prediction of the 2021 North American Heat Wave

    Get PDF
    In June 2021, Western North America experienced an intense heat wave with unprecedented temperatures and far-reaching socio-economic consequences. Anomalous rainfall in the West Pacific triggers a cascade of weather events across the Pacific, which build up a high-amplitude ridge over Canada and ultimately lead to the heat wave. We show that the response of the jet stream to diabatically enhanced ascending motion in extratropical cyclones represents a predictability barrier with regard to the heat wave magnitude. Therefore, probabilistic weather forecasts are only able to predict the extremity of the heat wave once the complex cascade of weather events is captured. Our results highlight the key role of the sequence of individual weather events in limiting the predictability of this extreme event. We therefore conclude that it is not sufficient to consider such rare events in isolation but it is essential to account for the whole cascade over different spatiotemporal scales

    Uncovering Networks from Genome-Wide Association Studies via Circular Genomic Permutation

    Get PDF
    Genome-wide association studies (GWAS) aim to detect single nucleotide polymorphisms (SNP) associated with trait variation. However, due to the large number of tests, standard analysis techniques impose highly stringent significance thresholds, leaving potentially associated SNPs undetected, and much of the trait genetic variation unexplained. Pathway- and network-based methodologies applied to GWAS aim to detect associations missed by standard single-marker approaches. The complex and non-random architecture of the genome makes it a challenge to derive an appropriate testing framework for such methodologies. We developed a rapid and simple permutation approach that uses GWAS SNP association results to establish the significance of pathway associations while accounting for the linkage disequilibrium structure of SNPs and the clustering of functionally related elements in the genome. All SNPs used in the GWAS are placed in a “circular genome” according to their location. Then the complete set of SNP association P values are permuted by rotation with respect to the genomic locations of the SNPs. Once these “simulated” P values are assigned, the joint gene P values are calculated using Fisher’s combination test, and the association of pathways is tested using the hypergeometric test. The circular genomic permutation approach was applied to a human genome-wide association dataset. The data consists of 719 individuals from the ORCADES study genotyped for ∼300,000 SNPs and measured for 51 traits ranging from physical to biochemical measurements. KEGG pathways (n = 225) were used as the sets of pathways to be tested. Our results demonstrate that the circular genomic permutations provide robust association P values. The non-permuted hypergeometric analysis generates ∼1400 pathway-trait combination results with an association P value more significant than P ≤ 0.05, whereas applying circular genomic permutation reduces the number of significant results to a more credible 40% of that value. The circular permutation software (“genomicper”) is available as an R package at http://cran.r-project.org/

    Comparative assessment of methods for estimating individual genome-wide homozygosity-by-descent from human genomic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide homozygosity estimation from genomic data is becoming an increasingly interesting research topic. The aim of this study was to compare different methods for estimating individual homozygosity-by-descent based on the information from human genome-wide scans rather than genealogies. We considered the four most commonly used methods and investigated their applicability to single-nucleotide polymorphism (SNP) data in both a simulation study and by using the human genotyped data. A total of 986 inhabitants from the isolated Island of Vis, Croatia (where inbreeding is present, but no pedigree-based inbreeding was observed at the level of F > 0.0625) were included in this study. All individuals were genotyped with the Illumina HumanHap300 array with 317,503 SNP markers.</p> <p>Results</p> <p>Simulation data suggested that multi-point FEstim is the method most strongly correlated to true homozygosity-by-descent. Correlation coefficients between the homozygosity-by-descent estimates were high but only for inbred individuals, with nearly absolute correlation between single-point measures.</p> <p>Conclusions</p> <p>Deciding who is really inbred is a methodological challenge where multi-point approaches can be very helpful once the set of SNP markers is filtered to remove linkage disequilibrium. The use of several different methodological approaches and hence different homozygosity measures can help to distinguish between homozygosity-by-state and homozygosity-by-descent in studies investigating the effects of genomic autozygosity on human health.</p

    Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus

    Get PDF
    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date

    Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus

    Get PDF
    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to dat

    Seasonal Tropical Cyclone Forecasting

    Get PDF
    This paper summarizes the forecast methods, outputs and skill offered by twelve agencies for seasonal tropical cyclone (TC) activity around the world. These agencies use a variety of techniques ranging from statistical models to dynamical models to predict basinwide activity and regional activity. In addition, several dynamical and hybrid statistical/dynamical models now predict TC track density as well as landfall likelihood. Realtime Atlantic seasonal hurricane forecasts have shown low skill in April, modest skill in June and good skill in August at predicting basinwide TC activity when evaluated over 2003-2018. Real-time western North Pacific seasonal TC forecasts have shown good skill by July for basinwide intense typhoon numbers and the ACE index when evaluated for 2003-2018. Both hindcasts and real-time forecasts have shown skill for other TC basins. A summary of recent research into forecasting TC activity beyond seasonal (e.g., multi-year) timescales is included. Recommendations for future areas of research are also discussed
    corecore