25 research outputs found

    Sensitivity of shelf sea marine ecosystems to temporal resolution of meteorological forcing

    Get PDF
    Phytoplankton phenology and the length of the growing season have implications that cascade through trophic levels and ultimately impact the global carbon flux to the seafloor. Coupled hydrodynamic‐ecosystem models must accurately predict timing and duration of phytoplankton blooms in order to predict the impact of environmental change on ecosystem dynamics. Meteorological conditions, such as solar irradiance, air temperature and wind‐speed are known to strongly impact the timing of phytoplankton blooms. Here, we investigate the impact of degrading the temporal resolution of meteorological forcing (wind, surface pressure, air and dew point temperatures) from 1‐24 hours using a 1D coupled hydrodynamic‐ecosystem model at two contrasting shelf‐sea sites: one coastal intermediately stratified site (L4) and one offshore site with constant summer stratification (CCS). Higher temporal resolutions of meteorological forcing resulted in greater wind stress acting on the sea surface increasing water column turbulent kinetic energy. Consequently, the water column was stratified for a smaller proportion of the year producing a delayed onset of the spring phytoplankton bloom by up to 6 days, often earlier cessation of the autumn bloom, and shortened growing season of up to 23 days. Despite opposing trends in gross primary production between sites, a weakened microbial loop occurred with higher meteorological resolution due to reduced dissolved organic carbon production by phytoplankton caused by differences in resource limitation: light at CCS and nitrate at L4. Caution should be taken when comparing model runs with differing meteorological forcing resolutions. Recalibration of hydrodynamic‐ecosystem models may be required if meteorological resolution is upgraded

    Connectivity and resilience of coral reef metapopulations in marine protected areas : matching empirical efforts to predictive needs

    Get PDF
    Š 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Coral Reefs 28 (2009): 327-337, doi:10.1007/s00338-009-0466-z.Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.Work by CB Paris was supported by the National Science Foundation grant NSF-OCE 0550732. Work by M-A Coffroth and SR Thorrold was supported by the National Science Foundation grant NSF-OCE 0424688. Work by TL Shearer was supported by an International Cooperative Biodiversity Group grant R21 TW006662-01 from the Fogarty International Center at the National Institutes of Health

    Modeling rule-based behavior: habitat selection and the growth-survival trade-off in larval cod

    No full text
    Environmental variation can cause significant fluctuations in the survival of larval fish and plankton. Understanding these fluctuations is critical for developing more accurate fisheries models, which are needed for both scientific and socioeconomic research. Growth, survival, and dispersal of marine planktonic larvae rely strongly on their behavior. Larval fish change their vertical positioning due to strong vertical gradients in light, temperature, predation pressure, and prey availability. Here, we explore how various behavioral rules predict vertical distribution, growth, and survival of larval cod (Gadus morhua) in a numerical model. The rules determine the trade-offs between larval growth, feeding rate, and predation rate, including their dependence on gut fullness and body mass. We evaluated the survival through size classes for different rules and random behavior and compared model predictions with observed larval distribution patterns. The rules predicted the correct average depth position with larval size, but failed to predict the timing of the observed vertical distribution pattern. However, model simulations revealed significant increases in survival for larval and juvenile cod with active behavior compared with larvae with random behavior. Behavior was important across all sizes of fish, and this study illustrates the value or added information of incorporating behavior in biophysical models. Copyright 2009, Oxford University Press.

    Retention of Coastal Cod Eggs in a Fjord Caused by Interactions between Egg Buoyancy and Circulation Pattern

    Get PDF
    Norwegian coastal cod form a stationary population of Atlantic cod Gadus morhua consisting of several genetically separated subpopulations. A small-scale differentiation in marine populations with pelagic eggs and larvae is made possible by local retention of early life stages in coastal environments. A numerical model was used to simulate the circulation in a fjord system in northern Norway over 2 years with different river runoff patterns. The dispersal of cod eggs was calculated with a particle-tracking model that used three-dimensional currents. The observed thickness of the low-salinity surface layer was well reproduced by the model, but the surface salinity was generally lower in the model than in the observations. The cod eggs attained a subsurface vertical distribution, avoiding the surface and causing retention. Interannual variations in river runoff can cause small changes in the vertical distribution of cod eggs and larger changes in the vertical current structure. Retention in the fjord system was strong in both years, but some eggs were subjected to offshore transport over a limited time period. The timing of offshore transport depended on the precipitation and temperatures in adjacent drainage areas. A possible match between maximized spawning and offshore transport may have a negative effect on local recruitment

    Earlier hatching and slower growth, a key to survival in the early life history of Norwegian spring spawning herring

    Get PDF
    Faster growth in fish larvae is often associated with enhanced survival, and here we investigated whether surviving juvenile Norwegian spring spawning herring Clupea harengus L. generally come from a pool of fast-growing larvae. Growth after hatching was determined using daily otolith increment widths at distances of 37.5 to 137.5 Âľm from the core in fish from 3 selected year classes (1991, 1992 and 1996) and compared among post-larvae (body lengths 20 to 30 mm) sampled on the shelf in May-June and 0-group juveniles sampled during the autumn in fjords and Barents Sea nurseries. In general, daily otolith growth after hatching was significantly higher in the larvae rather than in the surviving population of 0-group herring at comparable sizes. Larvae with a more similar growth rate to that of 0-group were those that hatched early in the year, were the slowest growers and were located close to the coast and far to the north in mid-May. We therefore propose that survival until 0-group may increase by hatching earlier in the year. This may result in a faster northward larval drift in colder ambient temperature. Although this will induce slower growth, the mechanism behind increased survival is larval drift trajectories and early arrival in nursery areas prior to the increasing predation risk developing northwards during spring warming. However, size (not growth rate) may still be important, as early hatching also may result in earlier metamorphosis, despite the slower growth.publishedVersio
    corecore