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Abstract 29 

Phytoplankton phenology and the length of the growing season have implications that cascade through trophic levels 30 

and ultimately impact the global carbon flux to the seafloor.  Coupled hydrodynamic-ecosystem models must 31 

accurately predict timing and duration of phytoplankton blooms in order to predict the impact of environmental 32 

change on ecosystem dynamics. Meteorological conditions, such as solar irradiance, air temperature and wind-speed 33 

are known to strongly impact the timing of phytoplankton blooms.  Here, we investigate the impact of degrading the 34 

temporal resolution of meteorological forcing (wind, surface pressure, air and dew point temperatures) from 1-24 35 

hours using a 1D coupled hydrodynamic-ecosystem model at two contrasting shelf-sea sites: one coastal 36 

intermediately stratified site (L4) and one offshore site with constant summer stratification (CCS). Higher temporal 37 

resolutions of meteorological forcing resulted in greater wind stress acting on the sea surface increasing water 38 

column turbulent kinetic energy. Consequently, the water column was stratified for a smaller proportion of the year 39 

producing a delayed onset of the spring phytoplankton bloom by up to 6 days, often earlier cessation of the autumn 40 

bloom, and shortened growing season of up to 23 days.  Despite opposing trends in gross primary production 41 

between sites, a weakened microbial loop occurred with higher meteorological resolution due to reduced dissolved 42 

organic carbon production by phytoplankton caused by differences in resource limitation:  light at CCS and nitrate at 43 

L4.  Caution should be taken when comparing model runs with differing meteorological forcing resolutions. 44 

Recalibration of hydrodynamic-ecosystem models may be required if meteorological resolution is upgraded.   45 

 46 

 47 

Plain Language Summary  48 

Computer models are used to predict the impact of changes in environmental pressures such as climate change on 49 

marine ecosystems. To predict these changes models need to accurately simulate the period when marine plants 50 

(phytoplankton) grow rapidly, termed the phytoplankton bloom, as these plants act as a food source to the marine 51 

food-chain. The models are run by defining meteorological variables, such as light, air temperature and wind speed 52 

which are known to strongly impact the timing of phytoplankton blooms. In this paper we investigate the impact in 53 

changing the time period between inputs of meteorological variables from 1 hour to 24 hours at two contrasting 54 

marine sites. The shorter the timespan between inputs, the more fluctuations in wind speed, resulting in increased 55 

wind stress acting on the sea surface and therefore greater turbulence and mixing within the water column. 56 

Consequently the predicted length of growing season is reduced with the spring phytoplankton bloom starting up to 57 

6 days later and the autumn bloom often terminating earlier. Implications for ecosystem function are site dependent. 58 

Caution should be taken when comparing model results using different time gaps of meteorological inputs and 59 

models may need retuning if upgraded to hourly meteorological inputs.   60 

  61 
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1. INTRODUCTION 62 

Phytoplankton phenology, that is, the timing of phytoplankton blooms, has consequences that cascade through 63 

ecological trophic levels, with the potential to change ecosystem structure (Edwards & Richardson, 2004; Platt et al., 64 

2003) and the flux of carbon to the sea floor.  This is particularly important in shelf seas as they trap a 65 

disproportionate amount of carbon from the atmosphere within their sediments compared to the deep global ocean 66 

(Bauer et al., 2013; Sharples et al., 2019).  The ability of marine ecosystem models to accurately represent and 67 

capture changes in phytoplankton phenology, in addition to the magnitude and composition of phytoplankton 68 

blooms, is imperative to predict the impacts of environmental change on ecosystem dynamics and the amount of 69 

carbon trapped within global shelf seas. 70 

Phytoplankton blooms occur when an optimal set of environmental conditions, in particular nutrient and light 71 

availability, both of which are mediated by turbulent mixing, support growth rates that exceed losses (e.g. grazing). 72 

There are several competing theories regarding the causes of the onset of the spring bloom.  The critical depth 73 

theory (Sverdrup, 1953) states that phytoplankton blooms will develop when the mixed layer is less than the critical 74 

depth: the depth where vertically integrated phytoplankton growth exceeds phytoplankton losses.  In more recent 75 

years, at least two other hypotheses have been formulated.  The critical turbulence theory postulates that a 76 

phytoplankton bloom can occur in unstratified waters if turbulent mixing is weak enough that phytoplankton stay 77 

within the photic zone long enough to photosynthesize (Huisman et al., 1999; Taylor & Ferrari, 2011) while the 78 

disturbance-recovery hypothesis (Behrenfeld, 2010; Behrenfeld et al., 2013), states that the phytoplankton bloom is 79 

dependent on the balance of phytoplankton loss and production due to grazing pressures and physical properties.  On 80 

shelves where light rather than nutrient availability limits phytoplankton growth, the spring bloom typically occurs 81 

during a period of low grazing pressure when a reduction in turbulent mixing and shoaling of the actively mixing 82 

surface layer eases light limitation. 83 

In contrast to the spring bloom, the autumn phytoplankton bloom typically occurs when light is still non-limiting 84 

and is fueled by entrainment of nutrients into the euphotic zone as convection and wind mixing deepen the surface 85 

mixed layer. In addition, the phytoplankton composition within the autumn bloom is different to that of spring: more 86 

motile species are present which have the ability to migrate across the mixed layer between nutrient rich and nutrient 87 

poor regions of the water column (Smyth et al., 2014).  Although not studied as intensively as the spring 88 

phytoplankton bloom, the autumn phytoplankton bloom can also make a substantial contribution to annual gross 89 

primary production (Wihsgott et al., 2019). 90 

In all hypotheses for phytoplankton bloom initiation, the timing of the phytoplankton bloom is closely coupled to 91 

meteorological indices such as light, temperature and wind speeds.  Wind and temperature alter the timing of 92 

stratification events in spring and autumn and the strength of stratification in summer, in addition to the amount of 93 

turbulent kinetic energy present throughout the water column.  Chiswell (2011) links the timing of the spring bloom 94 

to a reduction in wind-driven surface mixing with wind intensity estimated to explain up to 60% of the interannual 95 

variability in the timing of phytoplankton blooms along the Norwegian shelf (Vikebø et al., 2019).  Changing wind 96 
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conditions have also been shown to both advance and delay the onset of spring phytoplankton blooms (Follows & 97 

Dutkiewicz, 2002; Ruiz-Castillo et al., 2019; Sharples et al., 2006; Waniek, 2003).  A decrease in wind stress is 98 

often correlated with an earlier phytoplankton bloom in open oceans such as in the Japan Sea (Kim et al., 2007; 99 

Yamada & Ishizaka, 2006), North Atlantic (González Taboada & Anadón, 2014; Henson et al., 2009; Ueyama & 100 

Monger, 2005), the open ocean off the South West Iberian peninsula (Krug et al., 2018) and shallower systems such 101 

as the North West European Shelf (González Taboada & Anadón, 2014) and Baltic Sea (Groetsch et al., 2016). 102 

However, in the coastal zone of the South West Iberian shelf and at station L4 in the English Channel, an increase in 103 

wind speeds was linked to increased chlorophyll peaks and earlier bloom starts due to relief of nutrient stress 104 

(Barnes et al., 2015; Krug et al., 2018).  Winds have also been highlighted as important in influencing the autumn 105 

bloom by breaking down stratification enabling nutrients to reach the surface (Kim et al., 2007; Wihsgott et al., 106 

2019).  107 

Hydrodynamic-ecosystem models are forced by meteorological data.  It has long been recognised that temporal 108 

meteorological resolution within these models impacts ecosystem dynamics (Backhaus, 1985; Pohlmann, 1996b; 109 

Ridderinkhof, 1992).  In particular, low temporal and spatial resolution meteorological data may miss short-lived 110 

events, especially in wind speed or cloud cover, which could be important for phytoplankton phenology and 111 

consequently ecosystem dynamics.  Pre 1980s annual or monthly mean atmospheric forcing variables were used in 112 

hydrodynamic-ecosystem models until Backhaus (1985) recognised that variable wind fluxes have large influences 113 

on surface currents in shelf sea regions (Pohlmann, 1996b). In response, the early versions of the European Regional 114 

Seas Ecosystem Model (ERSEM) used observationally derived meteorological data on a 3 to 6 hourly timescale 115 

(i.e., Lenhart et al., 1995, 1997; Pohlmann, 1996a).  However this data has the caveat that as it is buoy/station based, 116 

it is only available at specific sites resulting in a coarse spatial resolution.  The production of atmospheric reanalysis 117 

products, such as ones by the European Centre for Medium range Weather Forecasting (ECMWF) and National 118 

Centre for Environmental Prediction (NCEP) increased the spatial resolution of available meteorological data and 119 

thus the ability to model larger areas.  Consequently, the temporal resolution of atmospheric forcing data used to 120 

force ERSEM since the mid 1990s has varied from monthly to hourly resolution (i.e. Aveytua-Alcázar et al., 2008; 121 

Blackford, 2002; Blackford & Burkill, 2002; Holt & James, 2001; Raick et al., 2005; Siddorn et al., 2007; Vichi et 122 

al., 1998) depending on the source of the meteorological data.  The release of the publicly available globally 123 

resolved hourly datasets from the ECMWF (ERA5; C3S, 2017) and NCEP (CFSR; Saha et al., 2010, 2014), will 124 

result in an increase in the temporal resolution of the meteorological forcing in hydrodynamic ecosystem models, 125 

potentially impacting both phytoplankton phenology and ecosystem dynamics.  126 

This paper investigates the impact of meteorological forcing on phytoplankton phenology and ecosystem dynamics 127 

within shelf seas.  We use a 1D hydrodynamic-ecosystem model to allow multiple simulations with the temporal 128 

resolution in meteorological forcing decreasing from 1 hour to 24 hourly. The model is run at two contrasting 129 

seasonally stratified shelf sea sites: the coastal L4 station in the western English Channel (Smyth et al., 2010, 2015) 130 

and at a site in the more isolated Central Celtic Sea (CCS). Changes in the physical dynamics of the water column 131 
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and subsequent phytoplankton phenology between the different scenarios are assessed.  Results are put into context 132 

of the impact to the global carbon cycle and the differences in the responses of the two stations are investigated. 133 

2. METHODS 134 

2.1.  Site locations and observations 135 

L4 is part of the Western Channel Observatory, located 13km offshore from Plymouth, UK (50.25°N, 4.2167°W; 136 

Figure 1). It represents a seasonally stratified coastal system with a depth of 50m and is influenced by riverine inputs 137 

from the Tamar and Plym rivers. Observational data has been collected at L4 on a weekly basis since 1988.  The 138 

timeseries initially consisted of sea surface temperature, zooplankton and phytoplankton data and was later 139 

supplemented with CTD profiles and nutrient data amongst others, in the early 2000s (Smyth et al., 2015).  In 140 

contrast, the CCS station represents a seasonally stratified open shelf system. It is situated in the Central Celtic Sea 141 

near the edge of the North-West European Shelf 220km south-west of Land’s End, UK (49.4°N, 8.6°W; Figure 1). It 142 

has a depth of 145m and was the focus of an intense physical, chemical and biological sampling campaign during 143 

the Shelf Sea Biogeochemistry project between 2014 and 2015 (Sharples et al., 2019). Observational data was 144 

obtained from the British Oceanographic Data Centre (BODC: www.bodc.ac.uk) for both L4 (Fishwick 2018; 145 

Woodward and Harris 2019) and CCS (cruises JC105, DY026, DY018, DY021, DY029, DY030, DY033, and 146 

DY034 , Hull et al., 2017; Wihsgott et al., 2016; Woodward, 2016). 147 

2.2. Hydrodynamic-Ecosystem Model 148 

Here, the European Regional Seas Ecosystem Model (ERSEM; Butenschön et al., 2016) is coupled to the 1D 149 

General Ocean Turbulence Model (GOTM; Burchard et al., 1999) using the Framework for Aquatic Biogeochemical 150 

Model (FABM; Bruggeman & Bolding, 2014).  ERSEM is a high complexity lower trophic food web model 151 

including both pelagic and benthic systems. It represents the biogeochemical cycling of 5 elements; carbon, 152 

nitrogen, phosphorus, silicon and oxygen, modulated by the cycling between producers, consumers and 153 

decomposers using variable stoichiometric ratios.  ERSEM uses a functional group approach further partitioning 154 

each set using trait and size to form 4 phytoplankton groups, 3 zooplankton groups and 1 bacteria group within the 155 

pelagic model.  In addition, various sizes and reactivities of particulate organic matter and dissolved organic matter 156 

are included as state variables within the pelagic model along with 5 inorganic nutrient groups.  The pelagic model 157 

is coupled to a benthic model containing particulate and dissolved organic matter, deposit feeders, suspension 158 

feeders, meiofauna, anaerobic and aerobic bacteria and inorganic nutrients.   159 

The model is configured to simulate a time period covering 2008 to 2015.  Model results are reported for 2010-2015 160 

with the first two years of the simulation considered the model spin up. Note that the CCS simulation finishes in 161 

August 2015 due to a lack of temperature and salinity data beyond this time period. Thus at CCS, results for Spring 162 

2015 are included within results presented in this paper but annual results are not included for 2015. The model is 163 

run with 100 vertical levels ranging from a minimum thickness of 6 and 18cm near the surface, at L4 and CCS 164 

http://www.bodc.ac.uk/
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respectively, to a maximum of 87 and 252cm in the middle of the water column.  Sensitivity tests show that 165 

differences in vertical resolution between the sites have minimal impact on model results (results not shown).  All 166 

model outputs are saved as daily means. 167 

2.3. Site specific setup- ‘baseline’ model 168 

Tidal forcing data was provided to GOTM using hourly depth-averaged horizontal velocities and sea surface 169 

elevations at both sites (Cazenave et al., 2016).  Hourly meteorological variables (10m zonal (u) and meridional (v) 170 

components of wind, sea surface pressure, 2m air temperature, 2m dew point temperature, total cloud cover, 171 

precipitation and net shortwave radiation) for the time period 2008-2016 were extracted from the ERA5 reanalysis 172 

dataset (C3S, 2017) which is provided at a spatial resolution of 0.25° x 0.25°.   Meteorological variables were 173 

linearly interpolated to each site location.  Due to forcing the model with hourly net shortwave radiation, surface 174 

reflectance within GOTM was disabled. 175 

This study uses the 1D L4 setup provided as a testcase in ERSEM 16.05 (Butenschön et al., 2016) as the baseline 176 

model from which changes as outlined below and in Table S1 were made.  The 1D model at both sites is relaxed on 177 

a yearly timescale to observed temperature and salinity data (Fishwick, 2018; Wihsgott et al., 2016) to avoid drift in 178 

these variables during the model run. Note this means the influence of changes in river flow on salinity at L4 and 179 

CCS, and thus stratification, is not included in the model simulations.  No relaxation was applied to any 180 

biogeochemical variables at either site.  Model calibration at CCS was performed with the aim of changing the 181 

minimum number of parameters from the basic L4 setup as possible. 182 

The model at CCS is initialized using average winter nutrient concentrations over 2014 and 2015 (BODC, 183 

Woodward, 2016). The benthic model at CCS was spun up so that a quasi-steady state was achieved– this allowed 184 

only a two year model spin-up period at the start of each model run.  For L4 the published parameter set was 185 

assumed to provide a quasi steady state.  To prevent the increase of benthic particulate matter and benthic refractory 186 

organic matter at both L4 and CCS, the affinity of benthic aerobic and anaerobic bacteria to benthic particulate 187 

organic matter was increased to 4 x10-5 m2  (mg C)-1 d-1, and affinity to benthic refractory organic matter  to 4 x 10-6 188 

m2  (mg C)-1 d-1  (Table S1). The k epsilon turbulent scheme was used within GOTM for both sites with the 189 

minimum turbulent kinetic energy (kmin) at both sites increased to match temperature profiles with observations at 190 

both sites. The absorption of silt was lowered at the CCS site to improve timing of the phytoplankton bloom and 191 

depth of subsurface chlorophyll maximum in summer within the model relative to observations (Hopkins et al., 192 

2019).  The nitrification rate constant was also lowered at both sites to improve ammonium dynamics at depth. 193 

Finally, the wind speed relative to current velocity, rather than the default setting of absolute wind speed, was used 194 

to calculate air-sea fluxes.  Both models were validated with observational data using robust statistics. Target 195 

diagrams showing bias, mean absolute error (MAE) and correlation coefficient (Butenschön et al., 2016; Jolliff et 196 

al., 2009) can be found in the supplementary material (Figure S1).   197 

2.4. Meteorological resolution forcing scenarios 198 
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Meteorological forcing scenarios were created using the instantaneous meteorological data, that is, 10m u and v 199 

components of wind, sea surface pressure, 2m air temperature, 2m dew point temperature and total cloud cover.  200 

Throughout this paper the term “meteorological forcing” refers to these variables.  Six hourly, 12 hourly, and 24 201 

hourly meteorological forcing data were subsampled from the hourly meteorological data to create the forcing 202 

scenarios. This sampling method was chosen to reflect the potential changes from switching  resolution of 203 

meteorological products such as from 6 hourly ERA Interim data to hourly ERA 5.  Precipitation and hourly net 204 

short wave radiation were kept at an hourly resolution for all scenarios as these are time integrated variables that 205 

already capture the change throughout the time-interval. Thus, while reduction in the time resolution in precipitation 206 

and net shortwave radiation causes their variability to be underestimated, it does not affect total heat or freshwater 207 

input. In addition, we chose not to adjust the resolution of shortwave radiation as resultant changes in meteorological 208 

forcing may be highly dependent on individual model formulations for light and are also hard to disentangle from 209 

other effects such as wind and temperature.  Conversely, a reduction in resolution of instantaneous variables causes 210 

biases of up to 3% (in u and cloud cover) and 0.8%(u) at L4 and CCS, respectively, in the mean of the timeseries of 211 

meteorological inputs for the scenarios compared to the hourly simulation (Table S2); additionally, reduced 212 

variability of some instantaneous variables (e.g., wind speed) will impact energy fluxes.   In order to identify which 213 

meteorological variables the model was sensitive to, the model was run a further 5 times, dropping one by one the 214 

temporal resolution of each individual meteorological forcing variable to 12 hourly, leaving all other variables at 215 

hourly resolution. 216 

2.5. Physical/Phenological indices 217 

Meteorological resolution impacts the average environment (light, nutrients) experienced by phytoplankton through 218 

modulation of turbulence, which controls the depth over which phytoplankton are mixed. This is the cornerstone of 219 

the critical depth and critical turbulence hypotheses.  Throughout this manuscript we use the mixed layer depth 220 

(MLD) as an indicator of the depth of near-surface stratification and as an estimate of the depth of the actively 221 

mixing surface layer, quantities most relevant to phytoplankton growth in the euphotic zone. We also calculate the 222 

potential energy anomaly (Simpson et al., 1981) as a measure of the overall strength of stratification throughout the 223 

water column. Typically, a shallower MLD in the spring is associated with an increase in stratification and often 224 

corresponds to a temporal shift in the onset of stratification.  A deeper MLD frequently represents weakening 225 

stratification and often corresponds with a temporal shift in the breakdown of stratification in autumn.  226 

A MLD criteria is used to identify different hydrodynamic-biogeochemical regimes observed throughout the seasons 227 

to aid analysis.  The MLD is often defined as the depth at which the density changes by 0.03-0.125 kg m-3 from a 228 

reference level (de Boyer Montégut et al., 2004 and references therein).  Here we defined the MLD as a change in 229 

density of more than 0.06 kg m-3 from the 2m density.  The assigned seasons reflect the onset of stratification where 230 

the spring bloom occurs and wanes (spring), stable stratification (summer) and the time period where stratification is 231 

eroded by a deepening of the mixed layer resulting in nutrients being mixed back into the surface water (autumn).  232 

The exact method for defining the time periods is shown in Table S3.  All calculations used either 10 day forward or 233 



Confidential manuscript submitted to Journal of Geophysical Research: Oceans 

8 

 

backward running means. The same time period for each regime is used across all years and all scenarios.  To define 234 

this, the minimum or maximum day of the year over all simulations and all scenarios which fulfilled the criteria in 235 

Table S3 were used to delineate the exact start and end of each season in the final analysis. Note that the time 236 

periods are slightly different for L4 and CCS.   237 

The phytoplankton bloom duration is typically defined as the time period when chlorophyll exceeds 5% of the 238 

annual median  (Henson et al., 2009; Krug et al., 2018; Racault et al., 2012, 2017; Sapiano et al., 2012; Siegel et al., 239 

2002) with Siegel et al. (2002) indicating that little difference occurs when the percentage is between 1 and 30%.  240 

Here, we define the start of the spring phytoplankton bloom as the first day of the year when depth-integrated 241 

chlorophyll is more than 10% of the annual median. The end of the phytoplankton bloom is defined when depth-242 

integrated chlorophyll drops below 10% of the annual median for more than 6 consecutive days. The bloom duration 243 

is the time between the start and end of the bloom.  This metric however does not capture the autumn phytoplankton 244 

blooms at our two sites.  Therefore we also defined the growing season as the period of time when the 10 day 245 

running average of mean water column gross primary production (GPP; gC m-3 d-1) is more than one tenth of the 246 

annual maximum GPP at each site.  The metrics for chlorophyll and GPP calculated for the hourly simulation are 247 

used for all scenarios so that differences between each meteorological scenario can be fairly assessed.  Finally, the 248 

peak magnitude of the bloom represents the day of the year when depth integrated chlorophyll is greatest.  249 

3. RESULTS  250 

3.1. Sensitivity tests 251 

The sensitivity tests on individual meteorological variables indicate that changes in the temporal resolution of wind 252 

drive differences in physical dynamics between the scenarios presented here at both stations (results not shown).  253 

Changing surface pressure, air and dew point temperatures, and cloud cover have minimal impact on phenology and 254 

ecosystem dynamics (Figure S2).  Thus throughout the rest this manuscript, we will focus on the impact of wind in 255 

driving ecosystem dynamics.  256 

3.2. Baseline (hourly) simulation 257 

The density structure of the water column in the hourly meteorological simulation at both sites in addition to the 258 

MLD and assigned seasons for the years 2014 and 2015 are shown in Figure 2.  The water column at L4 is well 259 

mixed for a longer portion of the year than at CCS. There is also a weaker contrast between surface and bottom 260 

water densities during summer at L4 indicating that seasonal stratification is weaker than at CCS.  A more intense 261 

spring bloom is predicted to occur at CCS and, during the summer, the subsurface chlorophyll maximum is deeper 262 

(40 m at CCS compared to 15 m at L4; Figure 2). In addition, a later autumn bloom resulting in a longer growing 263 

season is predicted in the model simulation at CCS than at L4 (Figure S3).  Comparing near-surface chlorophyll-a 264 

concentrations observed at both sites with the baseline model (Figure S3) provides confidence that the simulations 265 

are satisfactorily predicting the observed phytoplankton phenology. 266 
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3.3. Impacts of meteorological resolution on physical dynamics 267 

Lower meteorological resolution results in a 2-16% and 2-11% reduction in the annual mean magnitude of wind 268 

stress acting on the surface water at L4 and CCS, respectively, between all scenarios and the hourly meteorological 269 

simulation (Figure 3).  This is a result of missing high intensity short lived wind events in the coarser, subsampled 270 

resolution meteorology.  The strong positive relationship between wind stress and depth integrated turbulent kinetic 271 

energy throughout the water column (Figure 3) results in a reduction in turbulent kinetic energy in the scenarios of 272 

between 2-12% at L4 and 2-8% at CCS on an annual scale. Tidal forcing dampens the magnitude of change in the 273 

response of turbulent kinetic energy to meteorological forcing.  Rerunning the model scenarios without tides 274 

produces a reduction in turbulent kinetic energy of up to 25% compared to the hourly simulation (4-23% L4; 5-20% 275 

CCS; results not shown).  The change in turbulent kinetic energy in the upper water column due to meteorological 276 

forcing is overwhelmed by the impact of tides throughout the water column. The reduction in turbulent kinetic 277 

energy with lower temporal resolution of meteorological forcing gives rise to decreased water column mixing 278 

throughout the year resulting in earlier stratification of the water column in spring and later breakdown of 279 

stratification in autumn (Figures 4, S4 and S5).  Increases in the strength of the stratification as the meteorological 280 

resolution is reduced, are greater at L4 than at CCS.  In addition, the mixed layer becomes increasingly shallower in 281 

summer, and is up to 3m thinner at both L4 and CCS in the 24h meteorological resolution scenario compared to the 282 

hourly simulation. 283 

3.4. Change in phenology  284 

A shift towards an increasingly earlier spring phytoplankton bloom occurs as the temporal meteorological forcing 285 

resolution is reduced. The onset of the phytoplankton bloom is up to 4 and 6 days earlier at L4 and CCS respectively 286 

in the 24 hourly resolution scenario compared to the hourly simulation (Figure 5A) with similar trends in the timing 287 

of peak chlorophyll concentrations (Figure 5G).  The trends for the end of the phytoplankton bloom are not as clear 288 

as for the onset.  On average, the phytoplankton bloom ends later with lowering meteorological resolution resulting 289 

in a phytoplankton bloom that is up to 17 and 6 days longer at L4 and CCS, respectively, across all scenarios.  290 

However, in some years an earlier and thus shorter bloom occurs at L4 in the scenarios compared to the hourly 291 

resolution.  The peak magnitude of depth-integrated chlorophyll as the meteorological resolution is reduced is up to 292 

15 and 10% lower than the hourly resolution simulation at L4 and CCS respectively, although occasionally up to a 293 

5% greater magnitude in chlorophyll concentration does occur (Figure 5H).  294 

The weaker trend in the change in the peak amplitude of the bloom to meteorological forcing than other 295 

phenological indicators is likely due to the opposing impacts of wind stress on phytoplankton blooms.  In some 296 

years, differences in the MLDs due to changes in wind stress stimulates a higher magnitude bloom in the hourly 297 

meteorological forcing compared to the lower resolution scenarios (i.e 2014, L4; Figure S5a) due to additional 298 

nutrients being mixed into the photic zone. However, occasionally a large wind induced mixing event in the hourly 299 

simulation relative to the lower resolution of meteorological forcing may cause the cessation of the bloom due to 300 
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phytoplankton being mixed down to low light environments and hence produce lower peak chlorophyll 301 

concentrations (i.e. 2015 L4; Figure S5a). 302 

3.5. Change in length of growing seasons  303 

The increasingly longer period of stratification with lower meteorological resolution supports an increasingly longer 304 

growing season of phytoplankton (Figure 5).  The start of the growing season is up to 10 days earlier in the 24h 305 

scenario at L4 and 11 days earlier at CCS compared to the hourly simulation. The end of the growing season is up to 306 

13 and 10 days later at L4 and CCS respectively, although there is little change in the end of the growing season 307 

between the hourly and six hourly scenario at L4. The overall effect of reducing meteorological resolution at both 308 

sites is to increase the growing season by up to 23 days at L4 and 11 days at CCS.  309 

3.6. Annual changes in carbon reservoirs  310 

Substantial inter-annual variability exists in the dynamics of the spring bloom relative to meteorological forcing and 311 

this is demonstrated in the response of carbon stocks (Figure 6).  At L4, bacteria and dissolved organic carbon 312 

(DOC) biomasses increase with coarsening meteorological resolution, with up to 3% greater biomass in the 24h 313 

scenario than the hourly simulation, whilst dissolved inorganic carbon (DIC), phytoplankton, zooplankton, and 314 

particulate organic carbon (POC) pools generally decrease with lowering resolution of meteorological forcing.  All 315 

other carbon reservoirs at L4 show no obvious trend to changing meteorological resolution. In contrast, at CCS, 316 

carbon stocks increase with lower meteorological resolution in every year between 2010 and 2015 in all pools 317 

except for phytoplankton, dissolved inorganic carbon (DIC) and benthic bacteria.  While both the mean and median 318 

of phytoplankton and benthic bacterial biomasses increase with lower meteorological forcing, there are some years 319 

where  lower  biomasses occur  relative to the hourly forcing scenario.  320 

3.7. Response of carbon fluxes 321 

At L4, decreased meteorological resolution generally results in a lower GPP, reflecting the reduction in 322 

phytoplankton biomass (Figure 7). In contrast, at CCS, there is an annual increase in GPP associated with a 323 

reduction in resolution of meteorological forcing despite the high variability in changes of phytoplankton biomass at 324 

this site (Figure 7).  The simulated increase in the mass of DOC at both sites (Figure 6) is reflected in the increased 325 

production of DOC from phytoplankton by excretion and cell lysis with lowering meteorological resolution.  This 326 

positive relationship between the release of DOC by phytoplankton and lower meteorological resolution is greatest 327 

during spring while a negative relationship is observed during summer at both sites.   328 

The greater production of DOC from phytoplankton in the 6 hour resolution compared to the hourly simulation at 329 

both L4 and CCS is further highlighted in Figure 8.  Both stations show an enhanced microbial loop in the 6 hour 330 

scenario with greater transfer of carbon between phytoplankton, DOC, bacteria and DIC.  The enhanced microbial 331 

loop at both sites occurs despite opposing trends in both GPP and zooplankton predation of phytoplankton between 332 
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sites. The same trends are observed in the 12 hourly and 24 hourly meteorological resolution scenarios (results not 333 

shown). 334 

Changes in phytoplankton phenology also impact the flux of POC to the sediment (Figure S6).  At L4, deposition of 335 

POC is marginally earlier in the reduced resolution scenarios relative to the hourly simulation. A reduction in the 336 

peak depositional flux of POC by up to 5% also occurs during spring with lowering meteorological resolution while 337 

a slight enhancement of POC deposition occurs in autumn.  In contrast, at CCS an enhanced and earlier depositional 338 

flux of POC occurs during the spring bloom as the meteorological resolution is reduced although there is little 339 

difference throughout the rest of the year.  340 

4. DISCUSSION 341 

Phytoplankton phenology is known to be strongly impacted by meteorological variables, particularly wind and solar 342 

irradiance.  The timing of spring and autumn phytoplankton blooms have consequences that cascade through the 343 

food web (Edwards & Richardson, 2004) and have been shown to affect fish stocks and spawning, copepod 344 

reproduction and shrimp survival (Kodama et al., 2018; Leaf & Friedland, 2014; Marrari et al., 2019; Platt et al., 345 

2003; Richards et al., 2016). If high resolution meteorological data is not available, the ability of hydrodynamic-346 

ecosystem models to capture the impact of short-term fluctuations in wind stress, light availability and other key 347 

meteorological variables on bloom phenology and carbon cycling is limited.  Here we show that these short-term 348 

fluctuations contribute to the amount of energy available within the water column and thus influence both physical 349 

and ecological dynamics within ocean models. Our study is designed to highlight the potential impacts of changing 350 

meteorological forcing resolution on ecosystem dynamics.  This work provides insight into which variables and 351 

processes the phytoplankton blooms at both sites are sensitive to as discussed below, but it is not designed to 352 

determine which factors trigger the phytoplankton blooms at both sites.   353 

An idealized conceptual model explaining the role of meteorological resolution and ecosystem implications is 354 

created from our results (Figure 9).  A coarsening in meteorological resolution misses high intensity wind events and 355 

thus produces less turbulent kinetic energy within the water column resulting in a longer period of stratification, 356 

during which phytoplankton cells remain near the surface and are not mixed down to non-viable, low-light depths.  357 

Consequently, the growing season is longer, with the spring bloom starting earlier and the autumn bloom often 358 

terminating later.  In addition to the bloom starting earlier, changes  in wind stress have contrasting impacts on 359 

phytoplankton biomass due to: 1 ) reduced winds mix fewer nutrients across the nutricline leading to weaker spring 360 

blooms or 2) the phytoplankton bloom lasts longer with lower meteorological resolution as increased winds can 361 

cause an earlier cessation of the phytoplankton bloom by mixing the phytoplankton out of the photic zone (Follows 362 

& Dutkiewicz, 2002; Waniek, 2003). The balance between enhanced winds mixing nutrients across the nutricline, 363 

alleviating nutrient stress, and mixing phytoplankton out of the photic zone contributes to the direction of change in 364 

GPP to meteorological forcing in addition to the changes in the length of the growing season. Consequently, 365 

implications for ecosystem function are site dependent and is discussed further in section 4.2.  In this study, an 366 
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enhanced microbial loop occurs at both sites with coarsening meteorological resolution although different 367 

mechanisms drive the enhancement. 368 

4.1. Impacts of wind stress on phytoplankton phenology 369 

A coarsening of meteorological forcing resolution causes decreased wind stress on the ocean surface. Our results 370 

showing an earlier spring phytoplankton bloom under decreased wind stress are unsurprising given the earlier onset 371 

of stratification (Figure 4) and are consistent with the critical turbulence hypothesis of Taylor and Ferrari (2011) and 372 

results of Chiswell (2011) and Vikebø et al. (2019) who link the timing of the spring bloom to wind-driven 373 

processes.  The earlier phytoplankton bloom with decreased wind stress matches trends observed in other shallow 374 

systems such as in the European Shelf (González Taboada & Anadón, 2014), Central Cantabrian Sea (Álvarez et al., 375 

2009) and Baltic Sea (Groetsch et al., 2016).  However, Barnes et al. (2015) predict that the peak amplitude of the 376 

spring micro-phytoplankton bloom at L4 is later in years when there is reduced wind although this tends to coincide 377 

with either warmer sea surface temperatures or low salinity.  A similar trend for phytoplankton bloom initiation is 378 

also shown by Krug et al., (2018) in the shelf slope system off the south west Iberian peninsula. Both studies 379 

hypothesized that reduced winds decreased the availability of winter nutrients for phytoplankton due to enhanced 380 

stratification and reduced mixing.  The differences between our results and those predicted by Barnes et al. are likely 381 

due to differences in methods: Barnes et al. average wind speeds at L4 on a seasonal to annual scale so their results 382 

are not directly comparable to what we present here.  383 

The earlier start of the phytoplankton bloom at CCS with decreasing winds is also in contrast to that predicted by 384 

Henson et al. (2009). Using a combination of satellite data and model predictions, these authors indicate that bloom 385 

timing is delayed during both positive and negative phases of the North Atlantic Oscillation (NAO), which cause 386 

enhanced and decreased winds, respectively, at the approximate location of the CCS study site. However, Henson et 387 

al. (2009) use a different set of criteria to define the start of the bloom and predict the onset at CCS 1-2 months 388 

earlier than we report here. Earlier in the season,  phytoplankton phenology could be more sensitive to other factors 389 

associated with the NAO such as light or sea surface temperature, which may offset the changes associated with 390 

wind stress that we have found.  391 

Earlier phytoplankton blooms which are (at least partially) attributed to a decrease in wind stress are often longer 392 

and weaker than phytoplankton blooms that occur later in the season (González Taboada & Anadón, 2014; Groetsch 393 

et al., 2016) although, Krug et al. (2018) found the opposite trend on the coastal shelf off the south west Iberian 394 

peninsula.  Our results also suggest a longer bloom with decreased wind stress due to both an earlier start and later 395 

finish to the bloom (Figure 5).  In addition, although there is a tendency at both sites towards a diminished bloom 396 

magnitude when the bloom starts earlier this does not always happen.  In cases where the wind disrupts the 397 

formation of stratification, Waniek (2003) predicts that zooplankton biomass will increase relative to years with 398 

uninterrupted formation of stratification, due to having more time to respond to changes in phytoplankton biomass.  399 

Hence lower phytoplankton biomass and greater primary production, would occur, in addition to greater 400 

zooplankton biomass.  This mechanism appears to arise during 2014 at CCS and 2015 at L4 when there is a lower 401 



Confidential manuscript submitted to Journal of Geophysical Research: Oceans 

13 

 

peak magnitude of phytoplankton biomass and higher peak zooplankton in the hourly simulation compared to the 24 402 

hourly scenario (Figure S5b), although the peak magnitude of GPP is also lower during these years.  In all other 403 

years where a decrease in phytoplankton biomass occurs in the hourly simulation relative to the scenarios (i.e. 2012 404 

L4 and CCS; Figure S5a and b), a lower peak in zooplankton also occurs.  405 

In addition to changing phytoplankton bloom length, interannual changes in meteorological variables have also been 406 

linked to an increase in the length of the growing season.  Increasing delays between spring and autumn blooms 407 

have been observed in the temperate North Atlantic, and are attributed to enhanced stratification due to the warming 408 

of the ocean (González Taboada & Anadón, 2014).  Here, we show that differences in wind stress can also prolong 409 

the period of stratification and consequently the length of the growing season (Figure 4).  Wihsgott et al. (2019) 410 

determine that wind stress is important in controlling the breakdown of stratification and hence the timing of the 411 

autumn bloom at CCS.  During 2014 and 2015 at CCS, wind stress was predicted to be responsible for controlling 412 

the MLD 53% of the time, increasing to more than 60% during the period of the autumn bloom (Wihsgott et al., 413 

2019).  Similar to the spring bloom, our results suggest that increased wind stress can enhance the peak magnitude 414 

of phytoplankton biomass during autumn at both CCS and L4 (i.e in 2012,CCS, 2013,L4; Figure S5e and f) but also 415 

terminate the bloom earlier (2011, L4).  Overall, this leads to enhanced phytoplankton biomass in the hourly 416 

simulation compared to the reduced resolution scenarios at both stations during autumn (Figure 7).   417 

The timing and magnitude of the autumn bloom, particularly across the outer shelf immediately before a period of 418 

net off-shelf transport during the winter (Ruiz-Castillo et al., 2019), could affect the amount of carbon annually 419 

exported off-shelf (Wihsgott et al., 2019). Although not captured by the 1D model, wind stress plays an important 420 

role in seasonal shelf-scale circulation (Ruiz-Castillo et al., 2018) and can  advance (delay) the onset (breakdown) of 421 

stratification by ~ 1 week via a horizontal salinity straining mechanism, with corresponding adjustments to the 422 

spring and autumn bloom timings (Ruiz-Castillo et al., 2019). The changes in bloom timing reported here that result 423 

from differing temporal resolutions of the wind stress forcing are of the same magnitude.  424 

4.2. What drives the enhanced microbial loop? 425 

An enhanced microbial loop occurs at both sites with lowering meteorological resolution (Figure 8). However, the 426 

impact on the ecosystem structure and nutrient dynamics due to the change in stratification is different between the 427 

two sites, despite similarities in the phenology.  A key driver of the microbial loop is the change in DOC production.  428 

DOC production provides food for bacteria which enhances remineralization of carbon back to DIC. Extracellular 429 

release of DOC by phytoplankton is the main source of DOC to marine systems  (Borchard & Engel, 2015). 430 

Extracellular release may occur through passive diffusion of low molecular weight compounds across cell 431 

membranes (Bjornsen, 1988) or through active release of DOC by exudation (Fogg, 1983) which has been shown to 432 

be enhanced by environmental stress such as nutrient limitation (Borchard & Engel, 2015; Goldman et al., 1992; 433 

Mühlenbruch et al., 2018; Smith Jr et al., 1998).  Within ERSEM, DOC is released by phytoplankton as a fixed 434 

portion of GPP through excretion (Butenschön et al., 2016).  In addition, phytoplankton within ERSEM release 435 

higher proportions of DOC when undergoing nutrient stress through cell lysis and excretion.   436 
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We propose that different mechanisms are driving the enhanced microbial loop at each site reflecting the site-437 

specific response of GPP, phytoplankton and zooplankton to the meteorological forcing.  The small increase in GPP 438 

at CCS with lowering meteorological forcing resolution likely reflects the longer growing season due to the 439 

increased amount of time that the water column is stratified (Figure 4).  The higher GPP could further reflect less 440 

turbulent conditions and thus a greater time that phytoplankton remain in the photic zone.  The greater GPP in spring 441 

as meteorological resolution decreases (Figure 7) supports both these hypotheses.  In contrast, at L4 there is a weak 442 

trend towards a decreasing GPP on an annual scale with coarsening meteorological resolution which reflects the 443 

lower phytoplankton biomass in the scenarios (Figure 7).  The decreasing trend is greatest during summer and likely 444 

reflects the weaker flux of nutrients across the nutricline during this time period (Figure 10A) as there is reduced 445 

kinetic energy within the water column. This mechanism is much weaker at CCS (Figure 10B) as there the nutricline 446 

is positioned at greater depth, out of reach of the turbulence produced by surface wind stress. Thus greater wind 447 

stress is required at CCS to break down stratification up to the depth of the nutricline.  Lower GPP at L4 in the 448 

scenarios may also be driven by the thinner mixed layer resulting in a reduction in the total mass of nutrients within 449 

the mixed layer available for phytoplankton growth (Figure 4, S5c). This last process is hypothesized to be 450 

important for bloom timing in nutrient limited subtropical seas (Henson et al., 2009). 451 

The contrasting trends in GPP at L4 and CCS highlight the role that resource limitation plays in the response of a 452 

system to external variables. The spring bloom at L4 ultimately becomes limited by nitrate concentrations which 453 

remain low within surface waters throughout the summer (Smyth et al., 2010).  At CCS the spring bloom is typically 454 

both light and nitrate limited with summer phytoplankton growth nitrate limited and the autumn bloom light limited 455 

(Poulton et al., 2018).  This is confirmed in the model by the light and nutrient limitation factors which show a 456 

similar trend between the two sites for nutrients in the hourly simulation and an enhanced light limitation at CCS 457 

compared to L4 (Figure S7). Light limitation appears more important in controlling the response of the ecosystem to 458 

changes in meteorological forcing at CCS than nutrient limitation due to the correlation between growing season and 459 

GPP and the relatively strong stratification in summer reducing the impact of turbulent mixing. In addition, the 460 

variation in phytoplankton biomass compared to trends in GPP further suggests, at least in some years, top-down 461 

control on phytoplankton by zooplankton. This highlights the potential mismatch within the plankton community to 462 

changes (Edwards & Richardson, 2004). Indeed, zooplankton displays the highest relative change out of all the 463 

pelagic carbon reservoirs to meteorological forcing at CCS.  Although not directly included in ERSEM, a delayed 464 

phytoplankton bloom start can further limit phytoplankton biomass due to an enhanced zooplankton population as a 465 

result of reproduction (Henson et al., 2009). 466 

The fact that the two different sites, one light limited and one nutrient limited, both show increased DOC 467 

concentrations with lower meteorological resolution is directly linked to the multiple pathways for DOC formation 468 

in ERSEM.  The increased GPP at CCS results in greater release of DOC by phytoplankton, as indicated by the 469 

similar trend in the production of DOC by phytoplankton and GPP.  In contrast at L4, phytoplankton become more 470 

nutrient stressed as resolution of meteorological forcing reduces (Figures S7 and S8) which is highlighted by the 471 

differing trends between the creation of DOC by phytoplankton and GPP, during spring, autumn and on an annual 472 
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scale (Figure 7).  The increased nutrient stress with lowering meteorological resolution is likely due to a 473 

combination of the decrease in mixing which then reduces the amount of nutrients available for phytoplankton 474 

growth during the spring and autumn blooms, and the longer growing season with coarsening meteorological 475 

resolution resulting in a longer period of nutrient stress and thus increases the stress induced DOC production. The 476 

enhanced DOC concentrations intensifies the microbial loop, stimulating bacterial production and hence cycling of 477 

carbon back to DIC in the lower meteorological resolution simulations (Figure 8).   478 

4.3. Increasing meteorological resolution in hydrodynamic ecosystem models 479 

The recent release of the ERA5 reanalysis product (C3S, 2017) will result in increasingly higher resolution of 480 

meteorological forcing being used in ocean models.  Little consideration may be made on how this could impact 481 

ecosystem dynamics.  Our results show that switching the resolution of meteorological forcing from a dataset such 482 

as ERA-Interim (Dee et al., 2011), which provides 6 hourly analysis for meteorological data, to ERA5 could impact 483 

both phytoplankton phenology and ecosystem structure. The change in the timing of the start of the bloom of up to 6 484 

days due to resolution of meteorological forcing is substantial given that it is on the same order of magnitude as the 485 

variability of the start date of phytoplankton blooms observed in the North Sea and that of the response of benthic 486 

communities to depositional carbon fluxes (Sharples et al., 2006; Lessin et al., 2019) in addition to the timescale of 487 

forecasts made by operational models.  Large variability also exists in the response of phytoplankton phenology and 488 

ecosystem dynamics to meteorological forcing with some years showing little change. Thus changing the resolution 489 

of meteorological forcing enhances the predicted variability in timing of blooms in addition to the changes in the 490 

microbial loop and depositional fluxes to the sea floor. 491 

We have investigated the impact that wind in a 1D model has on physical and biogeochemical dynamics.  The 492 

impacts in 3D may be greater than presented here as the spatial resolution of the horizontal grid from ERA-Interim 493 

to ERA 5 improves from 79km to 31km adding further fluctuations in wind stress to the surface water.  In addition, 494 

hourly light and cloud cover data will also result in changes between ERA5 and ERA-Interim. Here, we 495 

purposefully kept net shortwave radiation constant in all scenarios as the effect of changes in incoming shortwave 496 

radiation as a result of switching from ERA5 to ERA-Interim are likely to be model specific, depending on the 497 

model formulations for light.  Changes in bias in the ERA-Interim and ERA5 datasets, for example, the higher 498 

precipitation rates over Europe in ERA5 than ERA-Interim (ECMWF/C3S/CAMS, 2018.), should also be 499 

considered when changing meteorological forcing, but are beyond the scope of this study.   500 

There may also be projects when time averaged meteorological variables (i.e. Blackford, 2002; Ridderinkhof, 1992) 501 

are used rather than instantaneous values.  Time averaging meteorological variables rather than subsampling,  502 

produces greater changes than observed here. Running the model with daily (24 hour) averaged data, further 503 

dampens the variability in meteorological inputs reducing the wind stress acting on sea surface resulting in larger 504 

changes in phytoplankton phenology and ecosystem dynamics than what we predict in the 24 hour subsampled 505 

scenario (results not shown).  506 
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5. CONCLUSION 507 

This study investigates the response of shelf-sea ecosystems to the resolution of meteorological forcing in 508 

hydrodynamic-ecosystem models.  This is especially important given the increased availability of hourly datasets 509 

such as the ERA5 and NCEP Climate Forecast System products.   In general, a higher temporal resolution of 510 

meteorological forcing results in greater mixing within the water column with a later development of the surface 511 

mixed layer in spring and earlier breakdown in autumn.  This produces a shorter growing season and later start to the 512 

phytoplankton bloom which directly impacts higher trophic levels within the ecosystem, and at CCS, weakens 513 

deposition of POC to the sea floor during spring.   The strength of the microbial loop at both sites is reduced: at the 514 

coastal L4 station this is a consequence of the relief of nutrient stress resulting in less DOC expelled by 515 

phytoplankton, at the offshore CCS station, this is a consequence of the decrease in GPP due to the reduced growing 516 

season. 517 

Our results show that it is important to consider the impact that changes in meteorological forcing of coupled 518 

hydrodynamic-ecosystem models will have on interpreting physical and ecosystem dynamics.  Although this work 519 

only includes two sites on shelf seas, we believe that our work can be extrapolated to other sites globally and other 520 

model setups.  We envision that the sites which will show the biggest response to meteorological forcing are those 521 

that are seasonally or intermittently stratified, similar to the ones studied here. These sites represent approximately 522 

44% of the surface area of the North Sea (van Leeuwen et al., 2015). Permanently mixed sites are unlikely to show 523 

any strong impact to changes in meteorological forcing resolution, while permanently stratified sites might show a 524 

small response to meteorological forcing. The conceptual model that we present can be used to guide researchers on 525 

expected outcomes using their knowledge of stratification of an individual site, resource limitation status and model 526 

design (i.e. whether there is a stress release mechanism for DOC). The main effect of changing the meteorological 527 

forcing in this study was to increase the variability of winds, consequently adding more energy into the water 528 

column.  A main limitation of our study is that changes in the frequency of prescribed shortwave radiation, or cloud 529 

cover, were not investigated.  The ecosystem response to such changes are likely to be dependent on individual 530 

model formulations for light which should also be considered when switching meteorological forcing. Thus, 531 

recalibration of models may be required when switching meteorological forcing which may give new insights to 532 

ecosystem dynamics.  533 
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Figure Captions 754 

Figure 1: Map of station locations.  Colours represent bathymetry (GEBCO_2019 grid, www.gebco.net) 755 
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Figure 2: Density and phytoplankton biomass distributions at L4 (A and C) and CCS (B and D) in 2014 and 2015.  758 

Black line indicates the mixed layer depth, grey dashed lines delineate seasons. Note difference in depth between L4 759 

and CCS. 760 
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Figure 3:  Correlation between mean annual magnitude of windstress and mean annual depth integrated turbulent 763 

kinetic energy (tke) for different meteorological forcings (shapes) and individual years (colour) between 2010 and 764 

2015. 765 
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Figure 4: Impact of meteorological forcing on physical dynamics baseline hourly simulation and 6,12 and 24 hourly 768 

scenarios (A-H), presented as a climatology for the time period 2010 to 2015 calculated using a 10 day running 769 

mean. Panel I-J represents the difference in mixed layer depth (MLD) in the 6h, 12h and 24h scenarios compared to 770 

the hourly simulation with positive values indicating a shallower mixed layer depth. Results for individual years can 771 

be found in the supplementary material. Tke = turbulent kinetic energy, MLD = mixed layer depth. The potential 772 

energy anomaly (Simpson et al., 1981) represents strength of stratification. Note difference in y scales between 773 

graphs 774 
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Figure 5: Difference in phytoplankton bloom (A, C, E, G, H) and growing season characteristics (B,D,F) between 777 

6,12 and 24h scenarios and hourly meteorological resolution simulation at L4 and CCS for each year between 2010 778 

and 2015. For CCS, 2015 results were not included in metrics for day of the year (DOY) end and duration as the 779 

model simulation ended in August 2015. Lines through middle of box plots represent median, black triangles: mean, 780 

whiskers in the boxplots represent the maximum and minimum range of the data.  Numbers on bottom of graph 781 

indicate the mean result of the 1h meteorological forcing simulation. See text for details on methods used to 782 

calculate phytoplankton bloom and growing season statistics. Note the change in y scale in panel H.  chl = 783 

chlorophyll a, GPP =  gross primary production.  784 
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Figure 6: Percentage change in the annual distribution of depth integrated mean carbon biomass for 6, 12 and 24 786 

hourly resolutions of meteorological forcing relative to hourly meteorological forcing for each year between 2010 787 

and 2015 at L4 (A-I) and CCS (J-R). For CCS, 2015 results were not included as the model simulation ended in 788 

August 2015.  Line across box represents median, black, filled triangle represents the mean, whiskers in the boxplots 789 

represent the maximum and minimum range of the data.  Positive values indicate 1 hourly meteorological simulation 790 

was lower than the defined scenario. Numbers at the bottom of graphs represent the mean annual biomass for hourly 791 

meteorological resolution in units of mg C m-2.  DIC = Dissolved inorganic carbon ,  P=Phytoplankton, Z= 792 

zooplankton, B = Bacteria, POC =  Particulate Organic Carbon, DOC = dissolved organic carbon, Ben. = Benthic.  793 
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Figure 7: Impact of meteorological forcing on the depth integrated, mean fluxes controlling phytoplankton and 796 

zooplankton biomass for each year over 2010-2015, shown as the percentage change between 6,12  and 24 hourly 797 

meteorological forcing and the hourly meteorological forcing simulation at L4 (A-D) and CCS (E-H). Seasons 798 

correspond to the days of the year given in Table S3. Positive values indicate 1 hourly meteorological simulation 799 

was lower than the defined scenario.  Line across box represents median, black, filled triangle represents the mean, 800 

whiskers in the boxplots represent the maximum and minimum range of the data.  Note difference in scales between 801 

stations. Numbers on bottom of graph indicate the result of the 1h meteorological forcing simulation (Fluxes: mg C 802 

m-2 d-1, biomass: mg C m-2). GPP = gross primary production, P-Z=Phytoplankton to zooplankton flux, P-DOC = 803 

phytoplankton to dissolved organic carbon flux ,P = phytoplankton, Z= zooplankton.  804 
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Figure 8: Flow diagram indicating mean differences in carbon reservoirs and fluxes between 2010 and 2015 807 

between the 6 hourly meteorological resolution scenario and hourly simulation for stations A) L4 and B) CCS.  808 

Numbers in brackets represent the standard deviation of annual fluxes and reservoirs.  Width of arrows is 809 

proportional to size of absolute flux, red indicates an increase in the 6 hourly forcing relative to the hourly while 810 

blue indicates a decrease. DIC = dissolved inorganic carbon,  P=phytoplankton, Z= zooplankton, B = Bacteria, POC 811 

=  Particulate Organic Carbon, DOC = dissolved organic carbon. Reservoir units: mg C m-3; Flux units: mg C m-2 yr-812 

1.   813 
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Figure 9:  Conceptual model highlighting the impact of enhancing the meteorological resolution, and thus wind 817 

stress on primary and dissolved organic carbon (DOC) production.  Increased mixing results in more phytoplankton 818 

mixed out of the photic zone, decreasing the average amount of light experienced by phytoplankton, and increased 819 

nutrients being mixed across the nutricline into the photic zone. Note changes in mixed layer depth (MLD) are 820 

exaggerated for purpose of this illustration. 821 
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Figure 10: Vertical diffusive flux of nitrate within the mixed layer (7.5m L4; 20m CCS) during summer shown as 823 

the difference  between 6,12 and 24 hourly meteorological forcing and the hourly meteorological forcing simulation 824 

at L4 (A) and CCS (B) for years 2010-2015.  Line across box represents median, black, filled triangle represents the 825 

mean, whiskers in the boxplots represent the maximum and minimum range of the data.    826 
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