266 research outputs found

    Enquête auprès du public de la bibliothèque municipale de Bordeaux (2002)

    Get PDF
    Résultats de l\u27enquête de la Bibliothèque municipale de Bordeaux menée auprès du public en 2002. Questionnaire, résultats détaillés et analyse

    A Very Large Number of GABAergic Neurons Are Activated in the Tuberal Hypothalamus during Paradoxical (REM) Sleep Hypersomnia

    Get PDF
    We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67 in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis

    Toward Automatic Label-Free Whispering Gallery Modes Biodetection with a Quantum Dot-Coated Microsphere Population

    Get PDF
    We explore a new calibration-free approach to biodetection based on whispering gallery modes (WGMs) without a reference measure and relative shifts. Thus, the requirement to keep track of the sensor position is removed, and a freely moving population of fluorophore-doped polystyrene microspheres can now fulfill this role of sensing resonator. Breaking free from fixed surface-based biosensing promotes adhesion between the microsphere sensors and the analytes since both can now be thoroughly mixed. The 70-nm-wide spectrum of green fluorescent microbeads allows us to monitor over 20 WGMs simultaneously without needing evanescent light coupling into the microspheres, hence enabling remote sensing. Since the exact radius of each microsphere is unknown a priori, it requires algorithmic analyses to obtain a reliable result for the refractive index of a solution. We first test our approach with different solutions of alcohol in water obtaining 3 × 10−4 precision on the refractive index at lower concentrations. Then, the solutions of bacterial spores in water yield clear evidence of biodetection in the statistical analysis of WGMs from 50 microspheres. To extend the fluorescence spectral range of our WGM sensors, we present preliminary results on coating microspheres with CdSe/ZnS quantum dots

    Intrinsically determined cell death of developing cortical interneurons

    Get PDF
    Cortical inhibitory circuits are formed by GABAergic interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis1-5, is that cortical interneurons are overproduced, and then following their migration into cortex, excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we have characterized the developmental cell death of mouse cortical interneurons in vivo, in vitro, and following transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax- (Bcl-2 associated X-) dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Remarkably, over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by central nervous system (CNS) neurons6-8. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Together, our findings indicate that interneuron cell death is intrinsically determined, either cell-autonomously, or through a population-autonomous competition for survival signals derived from other interneurons

    Glutamate receptor-like channels are essential for chemotaxis and reproduction in mosses

    Get PDF
    The deposited article version is a "Accelerated Article Preview" provided by Nature Publishing Group, and it contains attached the supplementary materials within the pdf.». This publication hasn't any creative commons license associated.Glutamate receptors are well characterized channels that mediate cell-to-cell communication during neurotransmission in animals. Nevertheless, information regarding their functional role in organisms without nervous systems is still limited. In plants, Glutamate Receptor-like (GLR) genes have been implicated in defence against pathogens, reproduction, control of stomata aperture and light signal transduction(1-5). However, the numerous GLR genes present in angiosperm genomes (20 to 70)(6) has prevented the observation of strong phenotypes in loss-of-function mutants. Here, we show that in the moss Physcomitrella patens, a basal land plant, mutation of GLR genes cause sperm failure in targeting the female reproductive organs. In addition, we show that GLR genes encode non-selective Ca(2+) permeable channels that can regulate cytoplasmic Ca(2+) and are needed to induce the expression of a BELL1-like transcription factor essential for zygote development. Our work reveals novel functions for GLRs in sperm chemotaxis and transcriptional regulation. Sperm chemotaxis is essential for fertilization in both animals and early land plants like bryophytes and pteridophytes. Therefore, our results are suggestive that ionotropic glutamate receptors may have been conserved throughout plant evolution to mediate cell-to-cell communication during sexual reproduction.Phillips University; Oxford University; University of Marburg; University of Muenster; MarieCurie ITN-Plant Origins grant: (FP7-PEOPLE-ITN-2008); FCT grants: (BEX-BCM/0376/2012; PTDC/BIA-PLA/4018/2012); NSF-US grant: (MCB 1616437/2016).info:eu-repo/semantics/acceptedVersio

    Role of the Lateral Paragigantocellular Nucleus in the Network of Paradoxical (REM) Sleep: An Electrophysiological and Anatomical Study in the Rat

    Get PDF
    The lateral paragigantocellular nucleus (LPGi) is located in the ventrolateral medulla and is known as a sympathoexcitatory area involved in the control of blood pressure. In recent experiments, we showed that the LPGi contains a large number of neurons activated during PS hypersomnia following a selective deprivation. Among these neurons, more than two-thirds are GABAergic and more than one fourth send efferent fibers to the wake-active locus coeruleus nucleus. To get more insight into the role of the LPGi in PS regulation, we combined an electrophysiological and anatomical approach in the rat, using extracellular recordings in the head-restrained model and injections of tracers followed by the immunohistochemical detection of Fos in control, PS-deprived and PS-recovery animals. With the head-restrained preparation, we showed that the LPGi contains neurons specifically active during PS (PS-On neurons), neurons inactive during PS (PS-Off neurons) and neurons indifferent to the sleep-waking cycle. After injection of CTb in the facial nucleus, the neurons of which are hyperpolarized during PS, the largest population of Fos/CTb neurons visualized in the medulla in the PS-recovery condition was observed in the LPGi. After injection of CTb in the LPGi itself and PS-recovery, the nucleus containing the highest number of Fos/CTb neurons, moreover bilaterally, was the sublaterodorsal nucleus (SLD). The SLD is known as the pontine executive PS area and triggers PS through glutamatergic neurons. We propose that, during PS, the LPGi is strongly excited by the SLD and hyperpolarizes the motoneurons of the facial nucleus in addition to local and locus coeruleus PS-Off neurons, and by this means contributes to PS genesis

    The association between malnutrition and the incidence of malaria among young HIV-infected and -uninfected Ugandan children: a prospective study

    Get PDF
    BACKGROUND: In sub-Saharan Africa, malnutrition and malaria remain major causes of morbidity and mortality in young children. There are conflicting data as to whether malnutrition is associated with an increased or decreased risk of malaria. In addition, data are limited on the potential interaction between HIV infection and the association between malnutrition and the risk of malaria. METHODS: A cohort of 100 HIV-unexposed, 203 HIV-exposed (HIV negative children born to HIV-infected mothers) and 48 HIV-infected children aged 6 weeks to 1 year were recruited from an area of high malaria transmission intensity in rural Uganda and followed until the age of 2.5 years. All children were provided with insecticide-treated bed nets at enrolment and daily trimethoprim-sulphamethoxazole prophylaxis (TS) was prescribed for HIV-exposed breastfeeding and HIV-infected children. Monthly routine assessments, including measurement of height and weight, were conducted at the study clinic. Nutritional outcomes including stunting (low height-for-age) and underweight (low weight-for-age), classified as mild (mean z-scores between -1 and -2 during follow-up) and moderate-severe (mean z-scores < -2 during follow-up) were considered. Malaria was diagnosed when a child presented with fever and a positive blood smear. The incidence of malaria was compared using negative binomial regression controlling for potential confounders with measures of association expressed as an incidence rate ratio (IRR). RESULTS: The overall incidence of malaria was 3.64 cases per person year. Mild stunting (IRR = 1.24, 95% CI 1.06-1.46, p = 0.008) and moderate-severe stunting (IRR = 1.24, 95% CI 1.03-1.48, p = 0.02) were associated with a similarly increased incidence of malaria compared to non-stunted children. Being mildly underweight (IRR = 1.09, 95% CI 0.95-1.25, p = 0.24) and moderate-severe underweight (IRR = 1.12, 95% CI 0.86-1.46, p = 0.39) were not associated with a significant difference in the incidence of malaria compared to children who were not underweight. There were no significant interactions between HIV-infected, HIV-exposed children taking TS and the associations between malnutrition and the incidence of malaria. CONCLUSIONS: Stunting, indicative of chronic malnutrition, was associated with an increased incidence of malaria among a cohort of HIV-infected and -uninfected young children living in an area of high malaria transmission intensity. However, caution should be made when making causal inferences given the observational study design and inability to disentangle the temporal relationship between malnutrition and the incidence of malaria. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00527800
    corecore