1,857 research outputs found

    Consumer Perception of Bread Quality

    Get PDF
    Bread contains a wide range of important nutritional components which provide a positive effect on human health. However, the consumption of bread in Belgium is declining during the last decades. This is due to factors such as changing eating patterns and a increasing choice of substitutes like breakfast cereals and fast foods. The aim of this study is to investigate consumer’s quality perception of bread towards sensory, health and nutrition attributes. Consumer’s quality perception of bread seams to be determined by sensory and health attributes. Three clusters of consumers are identified based on these attributes. In the first cluster, consumers’ quality perception of bread is not dependent on the health attributes it embraces, but to some extent on sensory attributes. For the second cluster, both health and sensory attributes appear to influence quality perception. In the third cluster only sensory attributes appear to be important in determining quality perception, though in a negative direction. The results of this study will possibly help health professionals and policy makers to systematically inform the consumers about the positive effects of bread and its components. Furthermore, firms can use the result to build up a tailor-made marketing strategy.Consumer, Quality perception, Bread, Demand and Price Analysis, Food Consumption/Nutrition/Food Safety,

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system

    Performance reporting

    Get PDF
    __Abstract__ Public organizations account for their performance through making public sector performance information publicly available, both to politicians through performance reporting, and to citizens through rankings, websites, and performance reports. This chapter reviews whether performance reporting makes public organizations more accountable: Do citizens and politicians actually consult and use performance information, and does this information change their decisions and behaviours? The chapter first looks at the use of performance metrics in political decision making, drivers of this use, and differences in use across groups. It subsequently reviews the literature on whether citizens use publicly available performance indicators and rankings to make an informed choice between alternative service providers. The focus is on school and hospital performance data. The chapter ends by discussing implications on equity, power relations, and the internal dynamics of organizations

    Building effective models from sparse but precise data

    Full text link
    A common approach in computational science is to use a set of of highly precise but expensive calculations to parameterize a model that allows less precise, but more rapid calculations on larger scale systems. Least-squares fitting on a model that underfits the data is generally used for this purpose. For arbitrarily precise data free from statistic noise, e.g. ab initio calculations, we argue that it is more appropriate to begin with a ensemble of models that overfit the data. Within a Bayesian framework, a most likely model can be defined that incorporates physical knowledge, provides error estimates for systems not included in the fit, and reproduces the original data exactly. We apply this approach to obtain a cluster expansion model for the Ca[Zr,Ti]O3 solid solution.Comment: 10 pages, 3 figures, submitted to Physical Review Letter

    First-principles study of ternary fcc solution phases from special quasirandom structures

    Get PDF
    In the present work, ternary Special Quasirandom Structures (SQSs) for a fcc solid solution phase are generated at different compositions, xA=xB=xC=13x_A=x_B=x_C=\tfrac{1}{3} and xA=12x_A=\tfrac{1}{2}, xB=xC=14x_B=x_C=\tfrac{1}{4}, whose correlation functions are satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions.Comment: 20 pages, 7 figure

    Role of defects in the electronic properties of amorphous/crystalline Si interface

    Full text link
    The mechanism determining the band alignment of the amorphous/crystalline Si heterostructures is addressed with direct atomistic simulations of the interface performed using a hierarchical combination of various computational schemes ranging from classical model-potential molecular dynamics to ab-initio methods. We found that in coordination defect-free samples the band alignment is almost vanishing and independent on interface details. In defect-rich samples, instead, the band alignment is sizeably different with respect to the defect-free case, but, remarkably, almost independent on the concentration of defects. We rationalize these findings within the theory of semiconductor interfaces.Comment: 4 pages in two-column format, 2 postscript figures include

    Phonon-assisted optical absorption in silicon from first principles

    Full text link
    The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasiparticle level entirely from first principles. We make use of the Wannier interpolation formalism to determine the quasiparticle energies, as well as the optical transition and electron-phonon coupling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset of indirect absorption is in very good agreement with experimental measurements for a range of temperatures. Moreover, our method can accurately determine the optical absorption spectrum of silicon in the visible range, an important process for optoelectronic and photovoltaic applications that cannot be addressed with simple models. The computational formalism is quite general and can be used to understand the phonon-assisted absorption processes in general
    • …
    corecore