
A Design Methodology for MPEG-21 based Digital
Policy Management Systems

Frederik De Keukelaere1, Xin Wang2, Chris Barlas3, Thomas DeMartini2,
Saar De Zutter1, and Rik Van de Walle1

1 Multimedia Lab, Ghent University-IBBT, Sint-Pietersnieuwstraat 41, B-9000 Ghent,
Belgium

{frederik.dekeukelaere, saar.dezutter,
rik.vandewalle}@ugent.be

2 ContentGuard, Inc., El Segundo, CA 90245 USA
{xin.wang, thomas.demartini }@contentguard.com

3 Rightscom, Ltd., London SE1 7HS, UK
chris.barlas@rightscom.com

Abstract. Nowadays, many types of digital content exist and even more ways
in which the content can be consumed. Together with these new ways to
express digital content came new business models for trading digital content.
Digital Rights Management systems were built to govern transactions. This
paper discusses a design methodology for creating a Digital Policy
Management system, being a part of Digital Rights Management systems. The
introduced Digital Policy Management system uses a standards-based approach
combining parts of the MPEG-21 Multimedia Framework. For implementing a
Digital Policy Management system an architecture of a Governed Execution
Environment is defined. It contains a Rights Analysis Tool, which derives the
required rights for sets of execution steps using a three-step process of tracking,
filtering, and analysis. Finally, this paper shortly discusses two application
scenarios: Digital Item Processing and AJAX, in which the introduced design
methodology can be applied.

1 Introduction

Currently, there are many types of digital content and probably just as many possible
ways of describing them and the context in which they can be used. A big challenge
caused by this diversity of technologies is the requirement to interoperate between the
different ways in which digital content, or its context, is represented, described,
identified, and protected. One possible way to tackle the problem is by providing a
very precise definition of what exactly constitutes a ‘Digital Item’ (DI). In MPEG-21,
DIs are defined as structured digital objects, with a standard representation,
identification, and metadata within the MPEG-21 framework [1].

To realize many business cases, multimedia content is combined with a Digital
Rights Management (DRM) [2] system. For example, a content distributor might want
to give a license to a consumer to play a resource if the consumer paid a required fee.
To realize this scenario, it is necessary to have a DRM system capable of performing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55822191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Frederik De Keukelaere et al.

many functionalities ranging from content safekeeping, license offering, content
distribution, secure content consumption, payment to authorization, authentication,
encryption/decryption, and many more [3]. This paper will be focusing on a
standards-based approach to develop a methodology for designing a part of an
MPEG-21-based DRM system: an MPEG-21 based Digital Policy
Management (DPM) system. An extensive discussion on the role of standardization in
DRM can be found in [4]. DPM focuses on the design, analysis, implementation,
deployment, and use of efficient and secure technology that handles digital
information in accordance with the relevant rules and policies.

In this paper, policies for the DPM system are expressed by means of permitted
interactions declared in licenses. Typical interactions, for which the rights are granted
in a license, are playing, copying, modifying, and so on. To express licenses in a
standardized form, MPEG developed the Rights Expression Language (REL) [5] and
to express the permitted interactions, called RDD ActTypes, MPEG developed the
Rights Data Dictionary (RDD) [5].

The main focus of this paper is the creation of a Governed Execution
Environment (GEE) [6] for running program code that needs to behave according to a
license. This GEE becomes active, inside a secure environment, after the decryption
of a content resource has been done. At that point, it is the responsibility of the GEE
to check if a program consuming the resource is not violating any of the permissions
it has been granted on that resource.

2 Rights Expressions vs. Application Code

This paper provides a design methodology allowing the construction of an MPEG-21
based DPM system that is ‘well-behaving’. In the context of this paper, well-behaving
is defined as acting according to the rights granted in the issued licenses. For granting
rights, this paper uses fourteen RDD ActTypes which are listed in Table 1. For each
definition, the words in italic are further defined in the RDD standard. This results in
an unambiguous definition of the RDD ActTypes.

To be able to know if a program is acting according to the issued licenses, it is
necessary to deduce the required rights for performing the actions of the program.
This is not a straightforward problem because the licenses grant the rights at a
different, higher, level than the operations that happen in the program. For example,
suppose a right has been granted to Print a resource. The act of printing is formally
defined in RDD as ‘To Derive a Fixed and directly Perceivable representation of a
Resource’. This high-level definition is perfectly interpretable by humans, and there
will be little doubt for a human once he has the printed paper in his hands that he
actually performed the Print act. For computers on the other hand, printing is most
often a combination of calling a set of APIs in a certain order to instruct a printer to
Print letters on a page eventually resulting in a printed paper. Therefore grants are
expressed at a different level than the operations in the program and a mapping
between both needs to be made in order to be able to create well-behaving
applications and hence an MPEG-21 DPM system.

A Design Methodology for MPEG-21 based Digital Policy Management Systems 3

3 Behavior of Static and Dynamic Applications in DPM Systems

3.1 Static Applications

For an application in which all code is known before run-time, called a static
application in this paper, the implementer understands, in advance, how the code
interacts with DIs. Being well-behaved is simply a matter of finding the appropriate
points in the implementation during its interaction with a DI to check for the rights
that map to that interaction.

The difficulty to find the appropriate points for incorporating rights checks can be
illustrated with the following example. Consider an application that handles a DI
containing a video resource. The application adapts the resource by reducing its
quality, storing the reduced version in memory, and finally writing the adapted
version back to disk. At first, possible points for incorporating the rights checks seem
to be located before the adaptation of the resource and before the storing to the disk.
However, there is only one appropriate point to incorporate the rights check and that
is before storing to the disk. Such a check could not be done earlier (for example,
before the adaptation), since the application could have the combined right to store an
adapted version but not the combined right to play an adapted version. Hence in this
case the appropriate point in time to check for a ‘store adapted resource’ right is just
before the storing of the adapted resource. A good methodology when trying to
identify the points for incorporating the rights checks into application code is to wait
until the results of the program become ‘visible’ [7] to the outside world, i.e., the
world outside of the DRM and hence the DPM system. In the example, this means

Table 1. RDD ActTypes Supporting REL

RDD ActType Definition.
Adapt To ChangeTransiently an existing Resource to Derive a new

Resource.
Delete To Destroy a DigitalResource.
Diminish To Derive a new Resource which is smaller than its Source.
Embed To put a Resource into another Resource.
Enhance To Derive a new Resource which is larger than its Source.
Enlarge To Modify a Resource by adding to it.
Execute To execute a DigitalResource.
Install To follow the instructions provided by an InstallingResource.
Modify To Change a Resource, preserving the alterations made.
Move To relocate a Resource from one Place to another.
Play To Derive a Transient and directly Perceivable representation

of a Resource.
Print To Derive a Fixed and directly Perceivable representation of a

Resource.
Reduce To Modify a Resource by taking away from it.
Uninstall To follow the instructions provided by a

UninstallingResource.

4 Frederik De Keukelaere et al.

waiting until the result of the adaptation is stored to disk. Other common examples are
before playing resources, before printing resources, and so on.

3.2 Dynamic Applications

A dynamic application, i.e., an application in which not all code is known before run-
time, does not allow the preprocessing of the application code to incorporate rights
checks. This is because the implementer of the application does not know what code
will be executed at the time of writing the application. A widely-used example of such
an application is a web browser with scripting support. The implementer of the web
browser writes the code for rendering the HTML data and the execution environment
for executing the downloaded scripts, i.e., the dynamic code. Since the implementer
of the execution environment for the scripts does not know what actions the scripts
will perform, he cannot incorporate the required rights checks.

One possible way to tackle this problem would be to look at the script (or any
program) that is dynamically loaded as being a static application. An analysis of that
static application can be realized using the methodology described above and rights
checks could be manually incorporated beforehand in the dynamically loaded code to
make the application well-behaving. This methodology will work if the author of the
dynamic code also has the intention to make his code well-behaved. However, in an
internet scenario where the consumer of the dynamic code, for example, of the web
page, does not know if the author of the dynamic code has incorporated the
appropriate rights checks, this approach will fail. In other words, when counting on
the goodwill of the author of the dynamic code, it is not possible to assure that the
dynamic application will be well-behaving in all circumstances.

An alternative to the previous solution is extending the execution environment for
the dynamic code to become a GEE in which rights checking is done at run-time by
analyzing the different steps in the code and mapping groups of instructions to RDD
ActTypes. By incorporating rights checks at run-time it is possible to assure that the
dynamic application is well-behaving at all times. How such a GEE can be designed,
is discussed in the following sections.

4 An architecture for a governed execution environment

In Fig. 1, we define an architecture for creating a GEE. This environment expects two
inputs. The first input is the dynamic code that needs to be executed. This code can be
any type of code as long as the APIs, used by the code, are known in advance. The
APIs need to be known in advance because an analysis of those will be done at
design-time of the GEE. The analysis of APIs will be discussed in Section 6. In the
examples throughout this paper, ECMAScript programs accessing and manipulating
XML nodes using the Document Object Model (DOM) [8] APIs are used as dynamic
code. The second input to the GEE is a license. This paper uses REL licenses which
grant RDD ActTypes as the permitted interactions with resources. Note that the
methodology discussed in the following sections is applicable to both static and
dynamic applications using a broad range of APIs. Dynamic applications using XML-

A Design Methodology for MPEG-21 based Digital Policy Management Systems 5

manipulating APIs are used here as an example to illustrate the usability of the
proposed methodology in internet environments.

The introduced architecture is composed of several different tools for supporting
rights checking in dynamic applications: the Program Execution Tool (PET), the
Rights Analysis Tool (RAT), and the License Evaluation Tool (LET).

The PET is responsible for executing the code. During the execution of the code,
the PET provides execution steps to the RAT. How this information is generated and
handled is discussed in Section 5.1.

The RAT is responsible for deducing the required rights for executing a program. It
takes the different execution steps from the PET as input and generates the required
RDD ActTypes as output. From input to output, a three-step process of tracking,
filtering and analyzing execution steps is used. The RAT is discussed in Section 5.

The LET checks for the right to perform the actions defined in the required RDD
ActTypes. To realize this, it creates an REL Authorization Request [5] combining the
output of the RAT and additional context information such as the current time and
date, usage history, and so on. Afterwards, the Authorization Request is evaluated
against the licenses provided to the GEE. The LET gives an answer to the following
question: ‘is the PET (on behalf of the user, the device or the underlying code)
authorized to perform the Execution Steps given the deduced set of required RDD
ActTypes and the rights granted in the REL licenses?’

In Fig. 1 the different tools are connected by a dashed line, this illustrates that the
different tools in the GEE do not necessarily have to reside on the same terminal. For
example, they could be implemented in a distributed way using web services. The
main requirement for creating a GEE is that the connection between the different tools
is done in a secure way such that the data that is exchanged between the tools cannot
be tampered with.

In order to build a more complete DRM system with the GEE, it is possible to use
MPEG-21 Intellectual Property Management and Protection (IPMP) [9]. In such a
system, the tools introduced above (the RAT, LET, and PET), could be registered
through an IPMP Tool Registration Authority [10]. This achieves interoperability in
the acquisition of the tools and the messages transmitted between the tools. How this
would be done in practice, is out of the scope of this paper, and will not be discussed.

Governed Execution Environment

Required Rights

License
Evaluation

Tool
Execution DecisionProgram

Execution Tool

Rights Analysis Tool

Tracking Filtering Analysis

Execution Steps

LicenseDynamic Code

Fig. 1. Architecture for a Governed Execution Environment

6 Frederik De Keukelaere et al.

5 Rights Analysis Tool

The RAT is a vital part for creating a GEE and hence for creating well-behaving
applications. For the RAT, we distinguish three steps: tracking, filtering, and analysis.
This section gives an overview of the functionality of the RAT using an ECMAScript
example as listed in Listing 1. More complex situations exist but are out of the scope
of this architectural paper.

Listing 1. ECMAScript code removing Chapter One from the book
var registry = DOMImplementationRegistry.getDOMImplementation("LS");
var builder = registry.createLSParser(
 DOMImplementationLS.MODE_SYNCHRONOUS,null);
var did1 = builder.parseURI("DID1.xml");
var book=did1.getFirstChild().getFirstChild();
var chapter1=book.getFirstChild();
book.removeChild(chapter1);
var domWriter = registry.createLSSerializer();
domWriter.writeToURI(did1,"DID1.xml");

Listing 2. DID1.xml: A DI representing a book
<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS">
 <Item id="book">
 <Item id="chapter1">
 <Component>
 <Resource mimeType="text/plain">
 Chapter One - revision 1.
 </Resource>
 </Component>
 </Item>
 </Item>
</DIDL>

The example in Listing 1 uses the DOM APIs to load a DI called DID1.xml (see
Listing 2) and manipulates that document by removing the Item node containing
Chapter One. Finally, it overwrites the original XML document with the newly
created XML document. The output of the RAT will be the set of required rights for
the different XML nodes of the document. This example will look at the required
rights for the Item with the ID book and the Item with ID chapter1.

5.1 Tracking

In the first step of the RAT, the execution steps of the code are converted to tracked
information usable for rights analysis [11]. The tracking process breaks down the
original code into elementary actions, for example, did1.getFirstChild().
getFirstChild(); is broken into two calls of getFirstChild on each of its
objects. To be able to track the nodes throughout the execution steps, each node is
initially given a unique ID. From that point on, any manipulation of the node results
in a new ID. The resulting tracked information can be found in Table 2. Note that the
first column is generated in the next step and can be ignored for the time being.

A Design Methodology for MPEG-21 based Digital Policy Management Systems 7

5.2 Filtering

In the second step of the RAT, the tracked information is filtered. This filtering
process retains tracked data relevant for the analysis of the required rights for a
certain XML node. Suppose it is needed to know what rights are required for the node
represented by the variable book. At the end of the tracking step, the book variable
points to the Item with the XML ID book and tracked ID Item_17. To filter out the
relevant information for Item_17, it is possible to use a backtracking algorithm,
called filtering algorithm F1, to the point where Item_17 first appeared.
Backtracking of Item_17 shows that Item_17 was created from Item_9, which was
first accessed from DIDL_6. As a result from the filtering process, the first line of the
tracked information is no longer considered because it is not related to the Item
identified by the book variable. The tracked data that will be considered for analysis
is indicated with an X in the first column, F1 of Table 2. Note that this is an example
where filtering is rather straightforward. More complex filtering situations exist but
are out of the scope of this architectural paper.

5.3 Analysis

The final step in the RAT is the analysis of the filtered data. For this process it is
important to know that rights should be evaluated with a certain node in mind. In
addition, it is necessary to map APIs to the RDD ActTypes (see Section 6).

The situation in which one line of tracked information can result in different
required RDD ActTypes for the different nodes involved can be illustrated using the
last entry, the removeChild, of Table 2. For the XML node book, with ID Item_9,
the RDD ActType definitions Reduce and Diminish are potential candidates for
required rights for this step. The same line of code requires the Delete RDD ActType
for the XML node chapter1 (with ID Item_11). Therefore, the output of the RAT
will always contain a combination of ID and required rights.

To further simplify the required rights for the book, it is necessary to look at more
context information. Based on the definitions of the RDD ActTypes the choice
between Reduce and Diminish is dependent on the availability of the original resource
at the end of the execution. In the example, there is only one resource left at the end
of the execution (since DID1.xml is overwritten see Listing 1 writeToURI). Thus,
the Diminish right is not applicable. Finally, the RAT will report that the Delete RDD
ActType is required for chapter1 and the Reduce RDD ActType is required for
book.

Table 2. (Filtered) Tracking Information of Listing 1

F1 ID Method and Parameters Original ID New ID
 #document_3 getFirstChild DIDL_6
X DIDL_6 getFirstChild Item_9
X Item_9 getFirstChild Item_11
X Item_9 removeChild(Item_11) Item_9 Item_17

8 Frederik De Keukelaere et al.

6 Analysis of APIs based on a decision tree for RDD ActTypes

Until now in the discussion about the decision making process for deriving required
RDD ActTypes, we have been silent on how to find out what are the potential rights
that might be triggered by a certain API call. In this section, we introduce a
methodology to analyze an API based on a decision tree for RDD ActTypes
(see Fig. 2). Note that the tree in Fig. 2 does not contain all RDD ActTypes listed in
Table 1. The RDD ActTypes that are not listed can be considered as stand-alone RDD
ActTypes and can be evaluated separate from the ones in the tree.

To be able to build a GEE, it is necessary to know the APIs that will be used by
applications running in the GEE. This requirement is met both in the static and
dynamic applications (as introduced in Section 2). For static applications, the APIs
are known before the source code is compiled to an executable and hence also known
before the analysis. In this case, analysis of the API can be done before the rights
checks are incorporated in the code. To be able to build a PET for dynamic code, it is
necessary to know the APIs that the dynamically downloaded code will use. If this
would not be the case, it would be impossible to develop an execution environment
that would execute the downloaded code. Therefore, the APIs will also be available
before execution time to perform an analysis for deducing the RDD ActTypes.

The analysis of an API needs to be performed on the API calls that potentially
cause a change in the status of the nodes that need to be analyzed. Hence, the getters
only need to be tracked to generate information about the origin of nodes. They do not
potentially trigger any required rights. Hence only the setters will be further
discussed. The analysis of a setter API call is done using the decision tree displayed in
Fig. 2. It is based on the definition of the setter API call and is performed on the
nodes involved in its execution. A DOM API call can be seen as:
return value = called node.method(parameters)

As discussed earlier, deciding what rights are potentially required for a certain API
call depends on the node that is considered while analyzing. Therefore, the API needs
to be separately analyzed for each node used in the API call, thus for return value,
called node, and each of the nodes passed as parameters.

For example, consider the removeChild API call from the DOM API (see Fig. 3).
In this case, there are three nodes for which potentially rights can be required. The
first node is the oldChild parameter. The second node is the called node on
which the removeChild method is called. The third node involved in this API call is
the return value. This is the same node as the oldChild parameter, and therefore
requires the same rights.

The analysis of the required rights for the nodes can be done using the decision tree
for RDD ActTypes. This decision tree is designed by comparing the state of the nodes
before executing the API call with the state after executing the API call. Since there
might not be a conclusive answer to all of the questions in the tree at the point of
evaluating, several routes can potentially be followed. As an example, the required
rights for the node on which the removeChild method is called, i.e., the
called node are deduced in the next paragraphs.

A Design Methodology for MPEG-21 based Digital Policy Management Systems 9

O
rig

in
al

 re
so

ur
ce

av

ai
la

bl
e?

M
od

ifi
ed

 re
so

ur
ce

av

ai
la

bl
e?

N
o

O
rig

in
al

 re
so

ur
ce

em

be
dd

ed
 in

an

ot
he

r r
es

ou
rc

e?

S
ec

on
d

ad
ap

te
d

re
so

ur
ce

 a
va

ila
bl

e?

Ad
ap

te
d

re
so

ur
ce

sm

al
le

r?

Ye
s

N
o

Ye
s

Ye
s

N
o

Ye
s

N
o

N
o

N
o

N
o

M
at

er
ia

l a
dd

ed

w
ith

ou
t r

em
ov

in
g?

M
at

er
ia

l r
em

ov
ed

w

ith
ou

t a
dd

in
g?

Lo
ca

tio
n

ch
an

ge
d?

N
o

N
o

N
o

O
nl

y
lo

ca
tio

n
ch

an
ge

d?
A

da
pt

ed
 re

so
ur

ce

la
rg

er
?

Y
es

Y
es

Ye
s

Ye
s

Y
es

Ye
s

D
el

et
e

M
od

ify

R
ed

uc
e

En
la

rg
e

M
ov

e

A
da

pt

D
im

in
is

h
En

ha
nc

e

no
th

in
g

ha
pp

en
ed

E
m

be
d

Fi

g.
 2

. D
ec

is
io

n
Tr

ee
 fo

r R
D

D
 A

ct
Ty

pe
s

10 Frederik De Keukelaere et al.

The first question in the decision tree is ‘is the original resource available after
executing the API call?’ Suppose the original node (i.e., the node before executing the
API call) is overwritten during the execution of the program, the answer to this
question is ‘no’. The next question is ‘is there a modified resource available?’. Since
there is material removed from the original node, there is a modified node available;
hence the answer is ‘yes’. The next question is ‘did the location of the resource
change?’. The answer to this question is ‘no’, because there was only a child removed
from the called node, nothing happened to the location of the called node. The
next question is ‘is there material removed without material being added?’. The
answer to this final question is ‘yes’. Therefore, the Reduce RDD ActType could be
required by executing this API call.

Suppose the node was not overwritten during the execution of the program. In that
case the answer to the first question would be ‘yes’. The following question is ‘is the
original resource embedded in another resource?’. The answer to this question is ‘no’
because none of the actions described in the Embed definition were performed. There
was only material removed from the called node. The next question is ‘is there a
second adapted resource available?’. Since the newly stored node is a newly created
node which is derived from the original called node, there is a second adapted
node of the original called node. Therefore the answer to this question is ‘yes’.
The answer to the next question ‘is the adapted resource smaller than the original?’ is
‘yes’, because material has been removed from the original to derive the second
adapted node. Therefore, the Diminish RDD ActType could be required by executing
this API call.

In addition to the analysis from the called node point of view, it is also
necessary to perform the analysis from the oldChild point of view. This can be
realized in the same way as discussed above. An overview of the RDD ActTypes and
the associated conditions that can potentially be triggered by removeChild is given
in Table 3. Other API calls can be analyzed using the same methodology.

In this section, it was discussed how it is possible to map API calls to the basic set
of RDD ActTypes of Table 1. However, RDD provides the possibility to extend this
set of basic ActTypes to create highly specialized combinations of ActTypes [12].
How an API analysis can be realized for those specialized RDD ActTypes has not

Table 3. RDD ActTypes potentially triggered by removeChild
Node RDD ActType Condition
oldChild Delete called node overwritten
 return value not used
called node Reduce called node overwritten
 Diminish called node not overwritten

removeChild
Definition

Removes the child node indicated by oldChild from the list of
children, and returns it.

Parameters
oldChild of type Node

The node being removed.
Return Value
Node

The node removed.

Fig. 3. Definition of the removeChild Method

A Design Methodology for MPEG-21 based Digital Policy Management Systems 11

been investigated yet. Therefore, in this paper, we will focus on the basic RDD
ActTypes.

7 Possible application scenarios

The first application scenario is based on the MPEG-21 Digital Item
Processing (DIP) [14] technology. The main goal of DIP is to extend the concept of a
DI to include programmability into DIs. The relationship between DIs and DIP is
similar to the relationship between XHTML and JavaScript. DIP allows the
declaration of dynamic behavior in DIs. DIP is largely based on ECMAScript and
DOM for manipulating and handling DIs. Since DIP can be considered a dynamic
application, it is possible to build a GEE for DIP based on the design methodology
described above. Such a governed environment for executing DIP applications can be
used to build a larger MPEG-21 based DRM system.

The second application scenario comes from a new trend in internet applications to
make websites more dynamic with the ultimate goal to result in a local-client
experience for the end-user while interacting with the web. One of the key
technologies in realizing this concept is Asynchronous JavaScript + XML, better
know as AJAX. Major players in internet applications are currently using AJAX
technologies to increase the performance and interactivity of their web sites. For
example, Google Mail, MSN Virtual Earth, and Yahoo! Instant Search are making
extensive use of AJAX. Since AJAX is based on DOM and JavaScript and
considering the interest in AJAX, it might prove to be an interesting application for
our introduced technologies.

8 Conclusions

In this paper, we introduced a design methodology for building MPEG-21 based DPM
systems. Such DPM systems allow the creators of software that handles content with
associated licenses, to write applications that treat content according to the rights
granted in the licenses.

For creating DPM systems, we distinguished two classes of applications: static
applications and dynamic applications. In the former, all code is known in advance, in
the latter only the APIs that will be called are known in advance. To create a DPM
system for dynamic applications, we described a design methodology for a GEE
incorporating a RAT. A detailed discussion of the tracking, filtering, and analyzing
algorithms used in the RAT, was given. To create those algorithms, we developed a
decision tree for determining the required RDD ActTypes.

Although the design methodology can be applied to various APIs, we applied it to
the DOM API. Since the DOM API is used on a large scale in applications using
XML, the results of this chapter can be applied without modification in many
applications, for example, in Digital Item Processing and AJAX.

12 Frederik De Keukelaere et al.

Acknowledgements

The research activities described in this paper were funded by Ghent University, the
Interdisciplinary Institute for Broadband Technology (IBBT), the Institute for the
Promotion of Innovation by Science and Technology in Flanders (IWT), the Fund for
Scientific Research-Flanders (FWO-Flanders), the Belgian Federal Science Policy
Office (BFSPO), and the European Union.

References

1. De Keukelaere, F., Van de Walle, R.: Digital Item Declaration and Identification. In:
Burnett, I., Pereira, F., Van de Walle, R., Koenen, R. (eds.): The MPEG-21 Book. John
Wiley & Sons Ltd, Chichester (2006) 69-116

2. Guth, S.: A Sample DRM System. In: Becker, E., Buhse, W., Günnewig, D., Rump, N.
(eds.): Digital Rights Management - Technological, Economic, Legal and Political Aspects.
Lecture Notes in Computer Science, vol. 2770. Springer-Verlag, Berlin Heidelberg New
York, (2003) 150-161

3. Gooch, R.: Requirements for DRM Systems. In: Becker, E., Buhse, W., Günnewig, D.,
Rump, N. (eds.): Digital Rights Management - Technological, Economic, Legal and
Political Aspects. Lecture Notes in Computer Science, vol. 2770. Springer-Verlag, Berlin
Heidelberg New York, (2003) 16-25

4. Rump, N.: Can Digital Rights Management Be Standardized? IEEE Signal Processing
Magazine, vol. 21, no. 2 (2004) 63-70

5. Wang, X., DeMartini, T., Wragg, B., Paramasivam, M., Barlas, C.: The MPEG-21 Rights
Expression Language and Rights Data Dictionary, IEEE Transactions on Multimedia,
vol. 7, no. 3 (2005) 408-417

6. De Keukelaere, F., DeMartini, T., Wang, X., De Zutter, S., Lerouge, S., Van de Walle, R.:
An Architecture for run-time analysis enabling rights checking in dynamic applications,
Workshop on Image Analysis for Multimedia Interactive Services (2006).

7. Rust, G., Bide, M.: The <indecs> metadata framework (2000)
8. World Wide Web Consortium: Document Object Model Level 3 Version 1.0 (2004)
9. Huang, Z.Y., Shen, S.M., Ji, M., Senoh, T.: Management and Protection of Digital Content

with the Flexible IPMP Scheme - MPEG-21 IPMP, Visual Communications and Image
Processing (2005) published on CD-ROM

10. Lauf, S., Rodriguez, E.:IPMP Components. In: Burnett, I., Pereira, F., Van de Walle, R.,
Koenen, R. (eds.): The MPEG-21 Book. John Wiley & Sons Ltd, Chichester (2006) 117-
138

11. De Keukelaere, F., DeMartini, T., Bekaert, J., Van de Walle, R.: Supporting rights checking
in an MPEG-21 Digital Item Processing environment, International Conference on
Multimedia & Expo (2005) published on CD-ROM

12. ISO/IEC: ISO/IEC 21000-7:2004/Amd 1 Information technology -- Multimedia framework
(MPEG-21) -- Part 7: DIA Conversions and Permissions (2006)

13. World Wide Web Consortium: XML Information Set (2004)
14. De Keukelaere, F., De Zutter, S., Van de Walle, R.: MPEG-21 Digital Item Processing,

IEEE Transactions on Multimedia, vol. 7, no. 3 (2005) 427-434

