99 research outputs found

    High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem

    Get PDF
    Benthic cyanobacterial mats (BCMs) are increasing in abundance on coral reefs worldwide. However, their impacts on biogeochemical cycling in the surrounding water and sediment are virtually unknown. By measuring chemical fluxes in benthic chambers placed over sediment covered by BCMs and sediment with BCMs removed on coral reefs in Curaçao, Southern Caribbean, we found that sediment covered by BCMs released 1.4 and 3.5 mmol C m<sup>-2</sup> h<sup>-1</sup> of dissolved organic carbon (DOC) during day and night, respectively. Conversely, sediment with BCMs removed took up DOC, with day and night uptake rates of 0.9 and 0.6 mmol C m<sup>-2</sup> h<sup>-1</sup>. DOC release by BCMs was higher than reported rates for benthic algae (turf and macroalgae) and was estimated to represent 79% of the total DOC released over a 24 h diel cycle at our study site. The high nocturnal release of DOC by BCMs is most likely the result of anaerobic metabolism and degradation processes, as shown by high respiration rates at the mat surface during nighttime. We conclude that BCMs are significant sources of DOC. Their increased abundance on coral reefs will lead to increased DOC release into the water column, which is likely to have negative implications for reef health

    Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe capacity of coral reefs to maintain their structurally complex frameworks and to retain the potential for vertical accretion is vitally important to the persistence of their ecological functioning and the ecosystem services they sustain. However, datasets to support detailed along-coast assessments of framework production rates and accretion potential do not presently exist. Here we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant maximum accretion potential (RAPmax) of the shallow reef zone of leeward Bonaire – between 5 to 12 m depth – at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived RAPmax rates varied3 considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (> 10 kg CaCO3 m-2 year-1 35 ), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (< 2 kg CaCO3 m-2 year-1 36 ) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budgets states, and thus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized land-based impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low-accretion potential will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea-level rise (SLR), thus posing a threat to reef functioning, biodiversity and trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presented here are rather the rule than the exception, but the study also highlights the need for similar high spatial resolution (along-coast) assessments of budget states and accretion potential to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropogenic disturbance and restoring framework-building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large-scale submergence of Caribbean coral reefs and will constrain the social and economic implications associated with the loss of reef goods and services.Ministry of Economic AffairsWageningen UniversityRoyal Netherlands Institute for Sea Researc

    Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    Get PDF
    In contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle. The present study describes the development of a method for isolating contractile single smooth muscle cells from pig urinary bladders. Contractile responses evoked by individual electrical stimulation were used as a measure of cell quality during development of the method. Responses were evaluated by measuring latency, contraction and relaxation times, as indicated by visible length changes, and stored on-line in a computer. Initial length, relative shortening and shortening speed were determined by measuring cell lengths in previously timed still video frames using a computer-controlled crosshair device. Increase of stimulus pulse duration resulted in improved responses, indicating that the observed shortening represented a physiological contractile response. Ultimately this method of evaluation was applied to two sets of cell preparations obtained by two different methods, one using only collagenase digestion, the other using mechanical manipulation as well. Both sets showed two main patterns of response to electrical stimulation: a pattern of contraction upon stimulation followed by enhanced contraction when stimulation was switched off (CK), and a pattern of contraction upon stimulation followed by relaxation when the stimulus was switched off (CR). The set of preparations containing the highest percentage of CR cells was found to be superior (i.e. greater initial length, shorter latency and contraction times, increased shortening and higher shortening speed). The method of isolation used for this set gives a high yield of contractile cells available for experimental use over a long span of time

    Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1374–1387, doi:10.1038/ismej.2011.12.Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially-dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter in the interaction between reefs and the surrounding ocean remains limited. Here we present the results of a four-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 µmol L-1 DOC and 5.5 X 108 cells L-1 offshore and 68 µmol L-1 DOC and 3.1 X 108 cells L-1 over the reef, respectively) across a four year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Beta-proteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because fringing reefs do not exhibit long residence times (unlike those characteristic of atoll lagoons) and because oceanic DOC is generally recalcitrant to degradation by ambient microbial assemblages. Our findings thus have interesting implications for the role of oceanic DOM and bacterioplankton in the ecology and metabolism of reef ecosystems.This project was supported by the US National Science Foundation Moorea Coral Reef Long Term Ecological Research project (NSF OCE-0417412) through minigrants to CAC and NSF OCE-0927411 to CAC as well as the MIRADA-LTERs program (NSF DEB-0717390 to LAZ)

    Orientation and dynamics of transmembrane peptides: the power of simple models

    Get PDF
    In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function

    Cyanobacterial Diversity and a New Acaryochloris-Like Symbiont from Bahamian Sea-Squirts

    Get PDF
    Symbiotic interactions between ascidians (sea-squirts) and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S–23S rRNA internal transcribed spacer region (ITS) and by examining symbiont morphology with transmission electron (TEM) and confocal microscopy (CM). As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d) and phycobiliproteins (PBPs) within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location
    corecore