12,715 research outputs found
Brans-Dicke wormholes in nonvacuum spacetime
Analytical wormhole solutions in Brans-Dicke theory in the presence of matter
are presented. It is shown that the wormhole throat must not be necessarily
threaded with exotic matter.Comment: Minor corrections, to be published in Phys. Rev.
Hierarchy of Floquet gaps and edge states for driven honeycomb lattices
Electromagnetic driving in a honeycomb lattice can induce gaps and
topological edge states with a structure of increasing complexity as the
frequency of the driving lowers. While the high frequency case is the most
simple to analyze we focus on the multiple photon processes allowed in the low
frequency regime to unveil the hierarchy of Floquet edge-states. In the case of
low intensities an analytical approach allows us to derive effective
Hamiltonians and address the topological character of each gap in a
constructive manner. At high intensities we obtain the net number of edge
states, given by the winding number, with a numerical calculation of the Chern
numbers of each Floquet band. Using these methods, we find a hierarchy that
resembles that of a Russian nesting doll. This hierarchy classifies the gaps
and the associated edge states in different orders according to the
electron-photon coupling strength. For large driving intensities, we rely on
the numerical calculation of the winding number, illustrated in a map of
topological phase transitions. The hierarchy unveiled with the low energy
effective Hamiltonians, alongside with the map of topological phase transitions
discloses the complexity of the Floquet band structure in the low frequency
regime. The proposed method for obtaining the effective Hamiltonian can be
easily adapted to other Dirac Hamiltonians of two dimensional materials and
even the surface of a 3D topological insulator.Comment: Phys. Rev. A 91, 04362
Laser-induced effects on the electronic features of graphene nanoribbons
We study the interplay between lateral confinement and photon-induced
processes on the electronic properties of illuminated graphene nanoribbons. We
find that by tuning the device setup (edges geometries, ribbon width and
polarization direction), a laser with frequency {\Omega} may either not affect
the electronic structure, or induce bandgaps or depletions at \hbar {\Omega}/2,
and/or at other energies not commensurate with half the photon energy. Similar
features are also observed in the dc conductance, suggesting the use of the
polarization direction to switch on and off the graphene device. Our results
could guide the design of novel types of optoelectronic nano-devices.Comment: 4 pages, 3 figure
Non-perturbative laser effects on the electrical properties of graphene nanoribbons
The use of Floquet theory combined with a realistic description of the
electronic structure of illuminated graphene and graphene nanoribbons is
developed to assess the emergence of non-adiabatic and non-perturbative effects
on the electronic properties. Here, we introduce an efficient computational
scheme and illustrate its use by applying it to graphene nanoribbons in the
presence of both linear and circular polarization. The interplay between
confinement due to the finite sample size and laser-induced transitions is
shown to lead to sharp features on the average conductance and density of
states. Particular emphasis is given to the emergence of the bulk limit
response.Comment: 14 pages, 8 figures, to appear in J. Phys.: Condens. Matter, special
issue on "Ultrafast and nonlinear optics in carbon nanomaterials
Floquet interface states in illuminated three-dimensional topological insulators
Recent experiments showed that the surface of a three dimensional topological
insulator develops gaps in the Floquet-Bloch band spectrum when illuminated
with a circularly polarized laser. These Floquet-Bloch bands are characterized
by non-trivial Chern numbers which only depend on the helicity of the
polarization of the radiation field. Here we propose a setup consisting of a
pair of counter-rotating lasers, and show that one-dimensional chiral states
emerge at the interface between the two lasers. These interface states turn out
to be spin-polarized and may trigger interesting applications in the field of
optoelectronics and spintronics.Comment: 5 pages with 3 figures + supplemental materia
The Low Redshift survey at Calar Alto (LoRCA)
The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of
galaxies provides a standard ruler to measure the accelerated expansion of the
Universe. To extract all available information about dark energy, it is
necessary to measure a standard ruler in the local, z<0.2, universe where dark
energy dominates most the energy density of the Universe. Though the volume
available in the local universe is limited, it is just big enough to measure
accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body
simulations and approximate methods based on Lagrangian perturbation theory, we
construct a suite of a thousand light-cones to evaluate the precision at which
one can measure the BAO standard ruler in the local universe. We find that
using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a
K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a
precision of 4\% and 1.2\% using reconstruction). We also find that such a
survey would help to detect the dynamics of dark energy.Therefore, we propose a
3-year long observational project, named the Low Redshift survey at Calar Alto
(LoRCA), to observe spectroscopically about 200,000 galaxies in the northern
sky to contribute to the construction of aforementioned galaxy sample. The
suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website:
http://lorca-survey.ft.uam.es
Multiterminal conductance of a floquet topological insulator
We report on simulations of the dc conductance and quantum Hall response of a Floquet topological insulator using Floquet scattering theory. Our results reveal that laser-induced edge states lead to quantum Hall plateaus once imperfect matching with the nonilluminated leads is lessened. The magnitude of the Hall plateaus, however, is not directly related to the number and chirality of all the edge states at a given energy, as usual. Instead, the plateaus are dominated by those edge states adding to the time-averaged density of states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full Floquet bands.publishedVersionFil: Foa Torres, Luis Eduardo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Foa Torres, Luis Eduardo Francisco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Pérez Piskunow, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Pérez Piskunow, Pablo Matías. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Balseiro, Carlos A. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina.Fil: Balseiro, Carlos A. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina.Fil: Balseiro, Carlos A. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Usaj, Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina.Fil: Usaj, Gonzalo. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina.Fil: Usaj, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Física de los Materiales Condensado
HIFI Spectroscopy of submm Lines in Nuclei of Actively Star Forming Galaxies
We present a systematic survey of multiple velocity-resolved HO spectra
using Herschel/HIFI towards nine nearby actively star forming galaxies. The
ground-state and low-excitation lines (E) show
profiles with emission and absorption blended together, while absorption-free
medium-excitation lines ()
typically display line shapes similar to CO. We analyze the HIFI observation
together with archival SPIRE/PACS HO data using a state-of-the-art 3D
radiative transfer code which includes the interaction between continuum and
line emission. The water excitation models are combined with information on the
dust- and CO spectral line energy distribution to determine the physical
structure of the interstellar medium (ISM). We identify two ISM components that
are common to all galaxies: A warm (),
dense () phase which dominates the
emission of medium-excitation HO lines. This gas phase also dominates the
FIR emission and the CO intensities for . In addition a cold
(), dense () more extended phase is present. It outputs the emission
in the low-excitation HO lines and typically also produces the prominent
line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk
231) an even hotter and more compact (R pc) region is present
which is possibly linked to AGN activity. We find that collisions dominate the
water excitation in the cold gas and for lines with
and in the warm and hot component, respectively.
Higher energy levels are mainly excited by IR pumping.Comment: Accepted by ApJ, in pres
- …