12,065 research outputs found

    Brans-Dicke wormholes in nonvacuum spacetime

    Get PDF
    Analytical wormhole solutions in Brans-Dicke theory in the presence of matter are presented. It is shown that the wormhole throat must not be necessarily threaded with exotic matter.Comment: Minor corrections, to be published in Phys. Rev.

    Hierarchy of Floquet gaps and edge states for driven honeycomb lattices

    Get PDF
    Electromagnetic driving in a honeycomb lattice can induce gaps and topological edge states with a structure of increasing complexity as the frequency of the driving lowers. While the high frequency case is the most simple to analyze we focus on the multiple photon processes allowed in the low frequency regime to unveil the hierarchy of Floquet edge-states. In the case of low intensities an analytical approach allows us to derive effective Hamiltonians and address the topological character of each gap in a constructive manner. At high intensities we obtain the net number of edge states, given by the winding number, with a numerical calculation of the Chern numbers of each Floquet band. Using these methods, we find a hierarchy that resembles that of a Russian nesting doll. This hierarchy classifies the gaps and the associated edge states in different orders according to the electron-photon coupling strength. For large driving intensities, we rely on the numerical calculation of the winding number, illustrated in a map of topological phase transitions. The hierarchy unveiled with the low energy effective Hamiltonians, alongside with the map of topological phase transitions discloses the complexity of the Floquet band structure in the low frequency regime. The proposed method for obtaining the effective Hamiltonian can be easily adapted to other Dirac Hamiltonians of two dimensional materials and even the surface of a 3D topological insulator.Comment: Phys. Rev. A 91, 04362

    Laser-induced effects on the electronic features of graphene nanoribbons

    Full text link
    We study the interplay between lateral confinement and photon-induced processes on the electronic properties of illuminated graphene nanoribbons. We find that by tuning the device setup (edges geometries, ribbon width and polarization direction), a laser with frequency {\Omega} may either not affect the electronic structure, or induce bandgaps or depletions at \hbar {\Omega}/2, and/or at other energies not commensurate with half the photon energy. Similar features are also observed in the dc conductance, suggesting the use of the polarization direction to switch on and off the graphene device. Our results could guide the design of novel types of optoelectronic nano-devices.Comment: 4 pages, 3 figure

    Non-perturbative laser effects on the electrical properties of graphene nanoribbons

    Get PDF
    The use of Floquet theory combined with a realistic description of the electronic structure of illuminated graphene and graphene nanoribbons is developed to assess the emergence of non-adiabatic and non-perturbative effects on the electronic properties. Here, we introduce an efficient computational scheme and illustrate its use by applying it to graphene nanoribbons in the presence of both linear and circular polarization. The interplay between confinement due to the finite sample size and laser-induced transitions is shown to lead to sharp features on the average conductance and density of states. Particular emphasis is given to the emergence of the bulk limit response.Comment: 14 pages, 8 figures, to appear in J. Phys.: Condens. Matter, special issue on "Ultrafast and nonlinear optics in carbon nanomaterials

    Floquet interface states in illuminated three-dimensional topological insulators

    Get PDF
    Recent experiments showed that the surface of a three dimensional topological insulator develops gaps in the Floquet-Bloch band spectrum when illuminated with a circularly polarized laser. These Floquet-Bloch bands are characterized by non-trivial Chern numbers which only depend on the helicity of the polarization of the radiation field. Here we propose a setup consisting of a pair of counter-rotating lasers, and show that one-dimensional chiral states emerge at the interface between the two lasers. These interface states turn out to be spin-polarized and may trigger interesting applications in the field of optoelectronics and spintronics.Comment: 5 pages with 3 figures + supplemental materia

    The Low Redshift survey at Calar Alto (LoRCA)

    Get PDF
    The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4\% and 1.2\% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website: http://lorca-survey.ft.uam.es

    Multiterminal conductance of a floquet topological insulator

    Get PDF
    We report on simulations of the dc conductance and quantum Hall response of a Floquet topological insulator using Floquet scattering theory. Our results reveal that laser-induced edge states lead to quantum Hall plateaus once imperfect matching with the nonilluminated leads is lessened. The magnitude of the Hall plateaus, however, is not directly related to the number and chirality of all the edge states at a given energy, as usual. Instead, the plateaus are dominated by those edge states adding to the time-averaged density of states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full Floquet bands.publishedVersionFil: Foa Torres, Luis Eduardo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Foa Torres, Luis Eduardo Francisco. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Pérez Piskunow, Pablo Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Pérez Piskunow, Pablo Matías. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Balseiro, Carlos A. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina.Fil: Balseiro, Carlos A. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina.Fil: Balseiro, Carlos A. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Usaj, Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina.Fil: Usaj, Gonzalo. Comisión Nacional de Energía Atómica. Instituto Balseiro; Argentina.Fil: Usaj, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Física de los Materiales Condensado

    HIFI Spectroscopy of H2O{\rm H_2O} submm Lines in Nuclei of Actively Star Forming Galaxies

    Get PDF
    We present a systematic survey of multiple velocity-resolved H2_2O spectra using Herschel/HIFI towards nine nearby actively star forming galaxies. The ground-state and low-excitation lines (Eup130K_{\rm up}\,\le 130\,{\rm K}) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130KEup350K130\,{\rm K}\, \le\, E_{\rm up}\,\le\,350\,{\rm K}) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2_2O data using a state-of-the-art 3D radiative transfer code which includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust- and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: A warm (Tdust4070KT_{\rm dust}\,\sim\,40-70\,{\rm K}), dense (n(H)105106cm3n({\rm H})\,\sim\,10^5-10^6\,{\rm cm^{-3}}) phase which dominates the emission of medium-excitation H2_2O lines. This gas phase also dominates the FIR emission and the CO intensities for Jup>8J_{\rm up} > 8. In addition a cold (Tdust2030KT_{\rm dust}\,\sim\,20-30\,{\rm K}), dense (n(H)104105cm3n({\rm H})\sim\,10^4- 10^5\,{\rm cm^{-3}}) more extended phase is present. It outputs the emission in the low-excitation H2_2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (Rs100_s\,\le\,100 pc) region is present which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with Eup300KE_{\rm up}\le300\,{\rm K} and Eup800KE_{\rm up}\le800\,{\rm K} in the warm and hot component, respectively. Higher energy levels are mainly excited by IR pumping.Comment: Accepted by ApJ, in pres
    corecore