152 research outputs found

    Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress

    Get PDF
    Arabidopsis CBF genes (CBF1–CBF3) encode transcription factors having a major role in cold acclimation, the adaptive process whereby certain plants increase their freezing tolerance in response to low non-freezing temperatures. Under these conditions, the CBF genes are induced and their corresponding proteins stimulate the expression of target genes configuring low-temperature transcriptome and conditioning Arabidopsis freezing tolerance. CBF2 seems to be the most determinant of the CBFs since it also regulates CBF1 and CBF3 expression. Despite the relevance of CBF genes in cold acclimation, little is known about the molecular components that control their expression. To uncover factors acting upstream of CBF2, mutagenized Arabidopsis containing the luciferase reporter gene under the control of the CBF2 promoter were screened for plants with de-regulated CBF2 expression. Here, the identification and characterization of five of these mutants, named acex (altered CBF2 expression), is presented. Three mutants show increased levels of cold-induced CBF2 transcripts compared with wild-type plants, the other two exhibiting reduced levels. Some mutants are also affected in cold induction of CBF1 and CBF3. Furthermore, the mutants characterized display unique phenotypes for tolerance to abiotic stresses, including freezing, dehydration, and high salt. These results demonstrate that cold induction of CBF2 is subjected to both positive and negative regulation through different signal transduction pathways, some of them also mediating the expression of other CBF genes as well as Arabidopsis responses to abiotic stresses

    Elucidating variations in the nucleotide sequence of Ebola virus associated with increasing pathogenicity

    Get PDF
    Background Ebolaviruses cause a severe and often fatal haemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently, the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission. Results To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naïve animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage. Conclusions Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV

    Which resources should be used to identify RCT/CCTs for systematic reviews: a systematic review

    Get PDF
    BACKGROUND: Systematic reviewers seek to comprehensively search for relevant studies and summarize these to present the most valid estimate of intervention effectiveness. The more resources searched, the higher the yield, and thus time and costs required to conduct a systematic review. While there is an abundance of evidence to suggest how extensive a search for randomized controlled trials (RCTs) should be, it is neither conclusive nor consistent. This systematic review was conducted in order to assess the value of different resources to identify trials for inclusion in systematic reviews. METHODS: Seven electronic databases, four journals and Cochrane Colloquia were searched. Key authors were contacted and references of relevant articles screened. Included studies compared two or more sources to find RCTs or controlled clinical trials (CCTs). A checklist was developed and applied to assess quality of reporting. Data were extracted by one reviewer and checked by a second. Medians and ranges for precision and recall were calculated; results were grouped by comparison. Meta-analysis was not performed due to large heterogeneity. Subgroup analyses were conducted for: search strategy (Cochrane, Simple, Complex, Index), expertise of the searcher (Cochrane, librarian, non-librarian), and study design (RCT and CCT). RESULTS: Sixty-four studies representing 13 electronic databases met inclusion criteria. The most common comparisons were MEDLINE vs. handsearching (n = 23), MEDLINE vs. MEDLINE+handsearching (n = 13), and MEDLINE vs. reference standard (n = 13). Quality was low, particularly for the reporting of study selection methodology. Overall, recall and precision varied substantially by comparison and ranged from 0 to 100% and 0 to 99%, respectively. The trial registries performed the best with median recall of 89% (range 84, 95) and median precision of 96.5% (96, 97), although these results are based on a small number of studies. Inadequate or inappropriate indexing was the reason most cited for missing studies. Complex and Cochrane search strategies (SS) performed better than Simple SS. CONCLUSION: Multiple-source comprehensive searches are necessary to identify all RCTs for a systematic review, although indexing needs to be improved. Although trial registries demonstrated the highest recall and precision, the Cochrane SS or a Complex SS in consultation with a librarian are recommended. Continued efforts to develop CENTRAL should be supported

    Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa

    Get PDF
    West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.status: publishe

    Identification of a human-specific epitope in a conserved region of the La/SS-B autoantigen.

    No full text
    corecore