158 research outputs found

    Expanded metabolite coverage of Saccharomyces cerevisiae extract through improved chloroform/methanol extraction and tert-butyldimethylsilyl derivatization

    Get PDF
    AbstractWe present an improved extraction and derivatization protocol for GC–MS analysis of amino/non-amino acids in Saccharomyces cerevisiae. Yeast cells were extracted with chloroform: aqueous-methanol (1:1, v/v) and the resulting non-polar and polar extracts combined and dried for derivatization. Polar and non-polar metabolites were derivatized using tert-butyldimethylsilyl (t-BDMS) dissolved in acetonitrile. Using microwave treatment of the samples, the derivatization process could be completed within 2 h (from >20 h of the conventional method), providing fully derivatized metabolites that contain multiple derivatizable organic functional groups. This results in a single derivative from one metabolite, leading to increased accuracy and precision for identification and quantification of the method. Analysis of combined fractions allowed the method to expand the coverage of detected metabolites from polar metabolites i.e. amino acids, organic acids and non-polar metabolites i.e. fatty alcohols and long-chain fatty acids which are normally non detectable. The recoveries of the extraction method was found at 88 ± 4%, RSD, N = 3 using anthranilic acid as an internal standard. The method promises to be a very useful tool in various aspects of biotechnological applications i.e. development of cell factories, metabolomics profiling, metabolite identification, 13C-labeled flux analysis or semi-quantitative analysis of metabolites in yeast samples

    Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors

    Full text link
    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents PXE, LAB, and Dodecane which are under discussion for next-generation experiments like SNO+, Hanohano, or LENA. Results comprise the wavelength range from 415 to 440nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.Comment: 9 pages, 3 figures, accepted for publication by Rev. Scient. Instr

    Interplay between unconventional superconductivity and heavy-fermion quantum criticality: CeCu2_2Si2_2 versus YbRh2_2Si2_2

    Get PDF
    In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2_2Si2_2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2_2Si2_2. In YbRh2_2Si2_2, superconductivity appears to be suppressed at T 10T\gtrsim~10 mK by AF order (TNT_N = 70 mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TAT_A slightly above 2 mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at TcT_c = 2 mK. Like the pressure - induced QCP in CeRhIn5_5, the magnetic field - induced one in YbRh2_2Si2_2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-TT unconventional heavy - fermion superconductors and other families of unconventional superconductors with higher TcT_cs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.Comment: 30 pages, 7 Figures, Accepted for publication in Philosophical Magazin

    The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    Get PDF
    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future Neutrino Physics", CERN, Oct. 200

    Conservation Patterns of HIV-1 RT Connection and RNase H Domains: Identification of New Mutations in NRTI-Treated Patients

    Get PDF
    Background: Although extensive HIV drug resistance information is available for the first 400 amino acids of its reverse transcriptase, the impact of antiretroviral treatment in C-terminal domains of Pol (thumb, connection and RNase H) is poorly understood. Methods and Findings: We wanted to characterize conserved regions in RT C-terminal domains among HIV-1 group M subtypes and CRF. Additionally, we wished to identify NRTI-related mutations in HIV-1 RT C-terminal domains. We sequenced 118 RNase H domains from clinical viral isolates in Brazil, and analyzed 510 thumb and connection domain and 450 RNase H domain sequences collected from public HIV sequence databases, together with their treatment status and histories. Drug-naıve and NRTI-treated datasets were compared for intra- and inter-group conservation, and differences were determined using Fisher’s exact tests. One third of RT C-terminal residues were found to be conserved among group M variants. Three mutations were found exclusively in NRTI-treated isolates. Nine mutations in the connection and 6 mutations in the RNase H were associated with NRTI treatment in subtype B. Some of them lay in or close to amino acid residues which contact nucleic acid or near the RNase H active site. Several of the residues pointed out herein have been recently associated to NRTI exposure or increase drug resistance to NRTI. Conclusions: This is the first comprehensive genotypic analysis of a large sequence dataset that describes NRTI-related mutations in HIV-1 RT C-terminal domains in vivo. The findings into the conservation of RT C-terminal domains may pave the way to more rational drug design initiatives targeting those regions

    Performance Analysis of Orthogonal Pairs Designed for an Expanded Eukaryotic Genetic Code

    Get PDF
    Background: The suppression of amber stop codons with non-canonical amino acids (ncAAs) is used for the site-specific introduction of many unusual functions into proteins. Specific orthogonal aminoacyl-tRNA synthetase (o-aaRS)/amber suppressor tRNA CUA pairs (o-pairs) for the incorporation of ncAAs in S. cerevisiae were previously selected from an E. coli tyrosyl-tRNA synthetase/tRNACUA mutant library. Incorporation fidelity relies on the specificity of the o-aaRSs for their ncAAs and the ability to effectively discriminate against their natural substrate Tyr or any other canonical amino acid. Methodology/Principal Findings: We used o-pairs previously developed for ncAAs carrying reactive alkyne-, azido-, or photocrosslinker side chains to suppress an amber mutant of human superoxide dismutase 1 in S. cerevisiae. We found worse incorporation efficiencies of the alkyne- and the photocrosslinker ncAAs than reported earlier. In our hands, amber suppression with the ncAA containing the azido group did not occur at all. In addition to the incorporation experiments in S. cerevisiae, we analyzed the catalytic properties of the o-aaRSs in vitro. Surprisingly, all o-aaRSs showed much higher preference for their natural substrate Tyr than for any of the tested ncAAs. While it is unclear why efficiently recognized Tyr is not inserted at amber codons, we speculate that metabolically inert ncAAs accumulate in the cell, and for this reason they are incorporated despite being weak substrates for the o-aaRSs. Conclusions/Significance: O-pairs have been developed for a whole plethora of ncAAs. However, a systematic and detaile

    Macoilin, a Conserved Nervous System–Specific ER Membrane Protein That Regulates Neuronal Excitability

    Get PDF
    Genome sequence comparisons have highlighted many novel gene families that are conserved across animal phyla but whose biological function is unknown. Here, we functionally characterize a member of one such family, the macoilins. Macoilins are characterized by several highly conserved predicted transmembrane domains towards the N-terminus and by coiled-coil regions C-terminally. They are found throughout Eumetazoa but not in other organisms. Mutants for the single Caenorhabditis elegans macoilin, maco-1, exhibit a constellation of behavioral phenotypes, including defects in aggregation, O2 responses, and swimming. MACO-1 protein is expressed broadly and specifically in the nervous system and localizes to the rough endoplasmic reticulum; it is excluded from dendrites and axons. Apart from subtle synapse defects, nervous system development appears wild-type in maco-1 mutants. However, maco-1 animals are resistant to the cholinesterase inhibitor aldicarb and sensitive to levamisole, suggesting pre-synaptic defects. Using in vivo imaging, we show that macoilin is required to evoke Ca2+ transients, at least in some neurons: in maco-1 mutants the O2-sensing neuron PQR is unable to generate a Ca2+ response to a rise in O2. By genetically disrupting neurotransmission, we show that pre-synaptic input is not necessary for PQR to respond to O2, indicating that the response is mediated by cell-intrinsic sensory transduction and amplification. Disrupting the sodium leak channels NCA-1/NCA-2, or the N-,P/Q,R-type voltage-gated Ca2+ channels, also fails to disrupt Ca2+ responses in the PQR cell body to O2 stimuli. By contrast, mutations in egl-19, which encodes the only Caenorhabditis elegans L-type voltage-gated Ca2+ channel α1 subunit, recapitulate the Ca2+ response defect we see in maco-1 mutants, although we do not see defects in localization of EGL-19. Together, our data suggest that macoilin acts in the ER to regulate assembly or traffic of ion channels or ion channel regulators

    Long-term kidney function recovery and mortality after COVID-19-associated acute kidney injury: An international multi-centre observational cohort study

    Get PDF
    Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking. Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1–365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021. Findings: Advanced age (HR 2.77, 95%CI 2.53–3.04, p < 0.0001), severe COVID-19 (HR 2.91, 95%CI 2.03–4.17, p < 0.0001), severe AKI (KDIGO stage 3: HR 4.22, 95%CI 3.55–5.00, p < 0.0001), and ischemic heart disease (HR 1.26, 95%CI 1.14–1.39, p < 0.0001) were associated with worse mortality outcomes. AKI severity (KDIGO stage 3: HR 0.41, 95%CI 0.37–0.46, p < 0.0001) was associated with worse kidney function recovery, whereas remdesivir use (HR 1.34, 95%CI 1.17–1.54, p < 0.0001) was associated with better kidney function recovery. In a subset of patients without chronic kidney disease, advanced age (HR 1.38, 95%CI 1.20–1.58, p < 0.0001), male sex (HR 1.67, 95%CI 1.45–1.93, p < 0.0001), severe AKI (KDIGO stage 3: HR 11.68, 95%CI 9.80–13.91, p < 0.0001), and hypertension (HR 1.22, 95%CI 1.10–1.36, p = 0.0002) were associated with post-AKI kidney function impairment. Furthermore, patients with COVID-19-associated AKI had significant and persistent elevations of baseline serum creatinine 125% or more at 180 days (RR 1.49, 95%CI 1.32–1.67) and 365 days (RR 1.54, 95%CI 1.21–1.96) compared to COVID-19 patients with no AKI. Interpretation: COVID-19-associated AKI was associated with higher mortality, and severe COVID-19-associated AKI was associated with worse long-term post-AKI kidney function recovery. Funding: Authors are supported by various funders, with full details stated in the acknowledgement section

    The multiplicity of performance management systems:Heterogeneity in multinational corporations and management sense-making

    Get PDF
    This field study examines the workings of multiple performance measurement systems (PMSs) used within and between a division and Headquarters (HQ) of a large European corporation. We explore how multiple PMSs arose within the multinational corporation. We first provide a first‐order analysis which explains how managers make sense of the multiplicity and show how an organization's PMSs may be subject to competing processes for control that result in varied systems, all seemingly functioning, but with different rationales and effects. We then provide a second‐order analysis based on a sense‐making perspective that highlights the importance of retrospective understandings of the organization's history and the importance of various legitimacy expectations to different parts of the multinational. Finally, we emphasize the role of social skill in sense‐making that enables the persistence of multiple systems and the absence of overt tensions and conflict within organizations
    corecore