135 research outputs found

    Anomalous single production of fourth generation tt' quarks at ILC and CLIC

    Full text link
    We present a detailed study of the anomalous single fourth generation tt' quark production within the dominant Standard Model(SM) decay modes at future e+ee^+e^- colliders. We calculate the signal and background cross sections in the mass range 300-800 GeV. We also discuss the limits of tqγt'q\gamma and tqZt'qZ (q=u,cq=u,c) anomalous couplings as well as values of attainable integrated luminosity for 3σ\sigma observation limit.Comment: 12 pages, 14 figures, version to be published on Nucl.Phys.

    Search for Top Quark FCNC Couplings in Z' Models at the LHC and CLIC

    Full text link
    The top quark is the heaviest particle to date discovered, with a mass close to the electroweak symmetry breaking scale. It is expected that the top quark would be sensitive to the new physics at the TeV scale. One of the most important aspects of the top quark physics can be the investigation of the possible anomalous couplings. Here, we study the top quark flavor changing neutral current (FCNC) couplings via the extra gauge boson Z' at the Large Hadron Collider (LHC) and the Compact Linear Collider (CLIC) energies. We calculate the total cross sections for the signal and the corresponding Standard Model (SM) background processes. For an FCNC mixing parameter x=0.2 and the sequential Z' mass of 1 TeV, we find the single top quark FCNC production cross sections 0.38(1.76) fb at the LHC with sqrt{s_{pp}}=7(14) TeV, respectively. For the resonance production of sequential Z' boson and decays to single top quark at the Compact Linear Collider (CLIC) energies, including the initial state radiation and beamstrahlung effects, we find the cross section 27.96(0.91) fb at sqrt{s_{e^{+}e^{-}}}=1(3) TeV, respectively. We make the analysis to investigate the parameter space (mixing-mass) through various Z' models. It is shown that the results benefit from the flavor tagging.Comment: 20 pages, 17 figures, 6 table

    Observation of Sb2S3-type post-post-perovskite in NaFeF3. Implications for ABX3 and A2X3 systems at ultrahigh pressure

    Get PDF
    Ten years have passed since the description of the perovskite to post-perovskite transition in MgSiO3 and its’ impact on the mineralogy and rheology of the D’’ region at the base of the Earth’s mantle. Much work has explored the mechanisms operating during this transformation and their influence on seismic response. In parallel, calculations in ABX3 systems have identified potential structures for a denser post-post-perovskite phase occurring at higher pressures. However, experiments have yet to elucidate any higher pressure form, beyond the CaIrO3-type. Here we describe the structures and transformations that lead to the crystallisation of a post-post-perovskite of Sb2S3-type in a GdFeO3-type fluoroperovskite at high pressure conditions. The use of single-crystal techniques gives unique access to the relative crystallographic orientations of all polymorphs. We use this information to extend this description to include other calculated and observed forms that are competitive in ABX3 and A2X3 stoichiometries (e.g. Sb2S3, -Gd2S3, Be3N2,) and provide substantial information on inter-relationships between these structures. Such information is critical to the interpretation of transition mechanisms, predicting transition sequences and to the expression of directional properties in those transformed structures

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC

    Predicting In Vivo Anti-Hepatofibrotic Drug Efficacy Based on In Vitro High-Content Analysis

    Get PDF
    Background/Aims Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes. Methods High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10 fibrotic markers. ~0.3 billion feature values from all cells in >150,000 images were quantified to reflect the drug effects. A systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (Epredict). Results We used in vivo data from one context (CCl4 rats with drug treatments) to optimize the computation of Epredict. This optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats and prevention of CCl4 induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We used Epredict values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation, apoptosis and contractility of HSCs. Conclusions The Epredict statistic, based on a prioritized combination of in vitro features, provides a better correlation between in vitro and in vivo drug response than any of the traditional in vitro markers considered.Institute of Bioengineering and Nanotechnology (Singapore)Singapore. Biomedical Research CouncilSingapore. Agency for Science, Technology and ResearchSingapore-MIT Alliance for Research and Technology Center (C-185-000-033-531)Janssen Cilag (R-185-000-182-592)Singapore-MIT Alliance Computational and Systems Biology Flagship Project (C-382-641-001-091)Mechanobiology Institute, Singapore (R-714-001-003-271

    Peripheral artery disease assessed by ankle-brachial index in patients with established cardiovascular disease or at least one risk factor for atherothrombosis - CAREFUL Study: A national, multi-center, cross-sectional observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the presence of peripheral artery disease (PAD) via the ankle brachial index (ABI) in patients with known cardiovascular and/or cerebrovascular diseases or with at least one risk factor for atherothrombosis.</p> <p>Methods</p> <p>Patients with a history of atherothrombotic events, or aged 50-69 years with at least one cardiovascular risk factor, or > = 70 years of age were included in this multicenter, cross-sectional, non-interventional study (DIREGL04074). Demographics, medical history, physical examination findings, and physician awareness of PAD were analyzed. The number of patients with low ABI (< = 0.90) was analyzed.</p> <p>Results</p> <p>A total of 530 patients (mean age, 63.4 ± 8.7 years; 50.2% female) were enrolled. Hypertension and dyslipidemia were present in 88.7% and 65.5% of patients, respectively. PAD-related symptoms were evident in about one-third of the patients, and at least one of the pedal pulses was negative in 6.5% of patients. The frequency of low ABI was 20.0% in the whole study population and 30% for patients older than 70 years. Older age, greater number of total risk factors, and presence of PAD-related physical findings were associated with increased likelihood of low ABI (<it>p </it>< 0.001). There was no gender difference in the prevalence of low ABI, PAD symptoms, or total number of risk factors. Exercise (33.6%) was the most common non-pharmacological option recommended by physicians, and acetylsalicylic acid (ASA) (45.4%) was the most frequently prescribed medication for PAD.</p> <p>Conclusion</p> <p>Our results indicate that advanced age, greater number of total risk factors and presence of PAD-related physical findings were associated with increased likelihood of low ABI. These findings are similar to those reported in similar studies of different populations, and document a fairly high prevalence of PAD in a Mediterranean country.</p

    Computational Modelling of Tissue-Engineered Cartilage Constructs

    Get PDF
    Cartilage is a fundamental tissue to ensure proper motion between bones and damping of mechanical loads. This tissue often suffers damage and has limited healing capacity due to its avascularity. In order to replace surgery and replacement of joints by metal implants, tissue engineered cartilage is seen as an attractive alternative. These tissues are obtained by seeding chondrocytes or mesenchymal stem cells in scaffolds and are given certain stimuli to improve establishment of mechanical properties similar to the native cartilage. However, tissues with ideal mechanical properties were not obtained yet. Computational models of tissue engineered cartilage growth and remodelling are invaluable to interpret and predict the effects of experimental designs. The current model contribution in the field will be presented in this chapter, with a focus on the response to mechanical stimulation, and the development of fully coupled modelling approaches incorporating simultaneously solute transport and uptake, cell growth, production of extracellular matrix and remodelling of mechanical properties.publishe
    corecore