4 research outputs found

    The metabolic syndrome is not associated with homocysteinemia: The Persian Gulf Healthy Heart Study

    Get PDF
    Background: It is uncertain whether homocysteine and the metabolic syndrome or its components are related in the general population, as studies investigating the association between homocysteine levels and insulin resistance have shown conflicting results. Methods: In an ancillary study to the Persian Gulf Healthy Heart Study, a cohort study of Iranian men and women aged ≥25 yr, a random sample of 1754 subjects were evaluated for the association of plasma homocysteine levels and the metabolic syndrome using National Cholesterol Education Program (NCEP)-Adult Treatment Panel (ATP)-III criteria. Total homocysteine levels and high sensitivity C-reactive protein (CRP) were determined by enzyme-linked immunosorbent assays. Results: Subjects with lower HDL-cholesterol and higher blood pressure showed significantly higher homocysteine levels (p=0.001 and p<0.0001; respectively). There was no significant difference in serum levels of homocysteine between subjects with and without the metabolic syndrome. In multiple logistic regression analysis, the metabolic syndrome did not show a significant association with serum homocysteine levels after adjusting for sex, age, smoking, fruit and vegetable intake pattern, body mass index, and physical inactivity. Concurrent elevated CRP levels and the metabolic syndrome also did not show a significant association with serum homocysteine levels after adjusting for sex, age, and lifestyle cardiovascular risk factors. Conclusions: There was no association between the metabolic syndrome using NCEP-ATPIII criteria and homocysteinemia in this study. These data refute the hypothesis that homocysteine levels are influenced by the metabolic syndrome, at least in general healthy population

    Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO

    No full text
    We report genomic analysis of 300 meningiomas, the most common primary brain tumors, leading to the discovery of mutations in TRAF7, a proapoptotic E3 ubiquitin ligase, in nearly one-fourth of all meningiomas. Mutations in TRAF7commonly occurred with a recurrent mutation (K409Q) in KLF4, a transcription factor known for its role in inducing pluripotency, or with AKT1(E17K), a mutation known to activate the PI3K pathway. SMO mutations, which activate Hedgehog signaling, were identified in ~5% of non-NF2 mutant meningiomas. These non-NF2 meningiomas were clinically distinctive—nearly always benign, with chromosomal stability, and originating from the medial skull base. In contrast, meningiomas with mutant NF2 and/or chromosome 22 loss were more likely to be atypical, showing genomic instability, and localizing to the cerebral and cerebellar hemispheres. Collectively, these findings identify distinct meningioma subtypes, suggesting avenues for targeted therapeutics
    corecore