2,592 research outputs found

    Tools for climate change adaptation in water management - inventory and assessment of methods and tools

    Get PDF
    This report summarizes an inventory of methods and tools for assessing climate change impacts, vulnerability and adaptation options, focusing on the water sector. Two questions are central: What are the opportunities for international applications of Dutch methods and tools? And: Which methods and tools available abroad are suitable for application in The Netherlands

    Designer quantum states of matter created atom-by-atom

    Full text link
    With the advances in high resolution and spin-resolved scanning tunneling microscopy as well as atomic-scale manipulation, it has become possible to create and characterize quantum states of matter bottom-up, atom-by-atom. This is largely based on controlling the particle- or wave-like nature of electrons, as well as the interactions between spins, electrons, and orbitals and their interplay with structure and dimensionality. We review the recent advances in creating artificial electronic and spin lattices that lead to various exotic quantum phases of matter, ranging from topological Dirac dispersion to complex magnetic order. We also project future perspectives in non-equilibrium dynamics, prototype technologies, engineered quantum phase transitions and topology, as well as the evolution of complexity from simplicity in this newly developing field

    Op soek na inter-dissiplinere samewerking - Enkele uitdagings

    Get PDF
    Dit blyk duidelik uit die omvangryke problematiek insake "ontwikkeling", en die uiteenlopende klemverskille in die "ontwikkelingspraktyk", dat 'n inter-dissiplinere en gekoordineerde benadering tot ontwikkeling dringend geword het. 'n Ernstige herorie

    European air quality maps 2005 including uncertainty analysis

    Get PDF
    The objective of this report is (a) the updating and refinement of European air quality maps based on annual statistics of the 2005 observational data reported by EEA Member countries in 2006, and (b) the further improvement of the interpolation methodologies. The paper presents the results achieved and an uncertainty analysis of the interpolated maps and builds upon earlier reports from Horalék et al. (2005; 2007)

    Influence of future air pollution mitigation strategies on total aerosol radiative forcing

    Get PDF
    We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to -2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by -1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time

    An interacting quark-diquark model of baryons

    Full text link
    A simple quark-diquark model of baryons with direct and exchange interactions is constructed. Spectrum and form factors are calculated and compared with experimental data. Advantages and disadvantages of the model are discussed.Comment: 13 pages, 3 eps-figures, accepted by Phys.Rev. C Rapid Communication

    Energy Level Crossings in Molecular Dynamics

    Get PDF
    Energy level crossings are the landmarks that separate classical from quantum mechanical modeling of molecular systems. They induce non-adiabatic transitions between the otherwise adiabatically decoupled electronic level spaces. This review covers results on the analysis of propagation through level crossings of codimension two, a mathematical justification of surface hopping algorithms, and a spectral study of a linear isotropic system
    corecore