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Summary. Energy level crossings are the landmarks that separate classical from
quantum mechanical modeling of molecular systems. They induce non-adiabatic
transitions between the otherwise adiabatically decoupled electronic level spaces.
This review covers results on the analysis of propagation through level crossings of
codimension two, a mathematical justification of surface hopping algorithms, and a
spectral study of a linear isotropic system.

1 Introduction

Molecular systems are a prime example of a multiscale problem. The light
electrons move rapidly, in a highly oscillatory fashion, while the nuclei, as the
heavier parts of the molecule, move much slower. T his separation of mass
and subsequently time and space scales is at the heart of Born-Oppenheimer
approximation. It allows for a drastic reduction of problem size when dealing
with molecular systems.

A quantum mechanical, non-relativistic description of a molecule is given
by the molecular Schrödinger operator

Hmol = −
N∑

j=1

1
2Mj

∆qj
−

n∑
j=1

1
2∆xj

+
∑
j<k

|xj − xk|−1 +
∑
j<k

ZjZk|qj − qk|−1 −
∑
j,k

Zk|xj − qk|−1,

where the vectors q and x denote the positions of N nuclei and n electrons,
and Mj , Zj denote mass and charge of the jth nucleus. For the simplicity of
notation, one assumes that the nuclei have identical mass M and introduces
a scale parameter
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0 < ε =
√

1/M � 1,

which is of the order 10−2, typically. One rewrites the operator as

Hmol = −ε
2

2
∆q +Hel(q),

where the electronic Hamiltonian Hel(q) acts, for a fixed nuclear configuration
q, on the electronic degrees of freedom only.

The first step of Born-Oppenheimer approximation consists in solving the
electronic eigenvalue problem for all nuclear configurations,

∀q : Hel(q)χ(q, x) = E(q)χ(q, x).

For the second step, one assumes that the electronic energy levels of in-
terest are uniformly separated from the remainder of the electronic spectrum.
That is, if one is interested in two levels E−(q) and E+(q),

∀q : dist({E+(q), E−(q)}, σ(Hel(q)) \ {E+(q), E−(q)}) > δ

for some δ > 0. Then, one looks for a diabatic basis {χ̃±(q, x)} of the electronic
subspace span{χ±(q, x)}, such that the mapping q 7→ χ̃±(q, x) is smooth. If
one replaces the Coulomb interactions inbetween nuclei, and between nuclei
and electrons, by a mollified charge distribution, then the electronic Hamilto-
nian depends smoothly on X, which guarantees existence of a diabatic basis.
A diabatic basis {χ̃±(q, x)} is expected to be different from the adiabatic basis
{χ±(q, x)} if the electron energy levels E±(q) have the same symmetry, see
[LS]. Given a diabatic basis, one builds a hermitian matrix

V (q) =
(
V−−(q) V−+(q)
V+−(q) V++(q)

)
,

whose entries consists of the expectation values of the electronic Hamiltonian
with respect to the diabatic basis functions,

Vkl(q) =
〈
χ̃k(q, ·),Hel(q)χ̃l(q, ·)

〉
L2

el

, k, l ∈ {−,+}.

The Born-Oppenheimer Hamiltonian is then given as

HBO = −ε
2

2
∆q + V (q).

It is a two-level Schrödinger operator acting only on the nucleonic degrees
of freedom. Let χ̃(q, x) = (χ̃+(q, x), χ̃−(q, x))t. If ψ(q, t) is a solution of the
time-dependent Born-Oppenheimer problem

iε∂tψ = HBOψ, ψ(q, 0) = ψ0(q), (1)

then ψ(q, t) · χ̃(q, x) is an approximate solution of the full molecular problem
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iε∂tΨ = HmolΨ, Ψ(q, x, 0) = ψ0(q) · χ̃(q, x)

by an error of order ε as ε→ 0, see [SpTe].
For polyatomic molecules, which consist of more than two nuclei, one has to

expect the crossing of electron energy levels, that is the existence of nucleonic
configurations q with E+(q) = E−(q). These crossings, or more precisely,
those with a crossing manifold of codimension two or higher,

codim{q ∈ Rd; E+(q) = E−(q)} ≥ 2,

induce non-adiabatic transitions that are of leading order in ε as ε→ 0: Denote
the orthogonal eigenprojectors of the matrix V (q) by Π±(q). There is a large
set of initial data ψ0 with

Π±ψ0 = 0 and ∃t > 0 : Π±(e−iHBOt/εψ0) = O(1), ε→ 0.

That is, the solution of the two-level system performs a non-adiabatic tran-
sition from the eigenspace associated with the eigenvalue E∓(q) to the one
associated with E±(q).

Fig. 1. The energy levels of the model for the cis-trans isomerization of retinal in
rhodopsin of [HSt]. They cross, when the angular variable φ is approximately π

2
or

3π
2

, and the collective coordinate vanishes. In the plot, the abscissa corresponds to
φ, the ordinate to y. The two local minima of the lower energy level are associated
with the cis and the trans configuration of the molecule.

Non-adiabatic transitions are typically linked with ultrafast isomerization
processes, radiationless decay, or molecular collisions. The most spectacular
example of a femtosecond isomerization modelled by an electron level crossing,
the cis-trans isomerization of retinal in rhodopsin, is the first step of vision,
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see [HSt]. Rhodopsin is the light-absorbing pigment of the rods, which are
responsible for the acute, but coarse colorless vision. The model incorporates
two electronic levels E−(q) and E+(q) and considers two nucleonic degrees
of freedom q = (φ, y), an angular variable φ ∈ T and a collective coordinate
y ∈ R. The levels E±(q) cross twice, when φ ≈ π

2 or φ ≈ 3π
2 and y = 0, see

Figure 2. The two local minima of E−(q) are associated with the cis and the
trans configuration of the molecule; the lower steeper one represents the stable
cis configuration and the higher flatter one the unstable trans configuration.
Initially, the wave function is localized in the cis minimum. After photons
excited the wave function vertically to the upper level E+(q), it runs down
to approach the two crossing points and performs a non-adiabatic transition
there, down to the trans minimum of the lower level E−(q). This isomerization
is considered the first step in a chain of events that culminate in a change of
the impulse pattern sent along the optic nerve.

Generally, physical models incorporate more than two nucleonic degrees
of freedom. The numerical solution of Schrödinger equations with high di-
mensional configuration spaces, however, is a challenging task. A grid based
representation of the wave function scales exponentially in the number of
space dimensions. Since the wave function is highly oscillatory, with oscilla-
tions in space and time of about the order ε, a full grid based discretization in
four space dimensions is still considered at the borderline of current computer
power.

On the other hand, the wave function itself does not have any direct phys-
ical interpretation. Meaningful are quadratic quantities of the wave function
like the position density or expectation values. A suitable vehicle for encod-
ing quadratic quantities of a wave function ψ ∈ L2(Rd,C2) is the associated
Wigner function

W (ψ)(q, p) = (2π)−d

∫
Rd

ei y·pψ(q − ε
2y)⊗ ψ(q + ε

2y)dy, (q, p) ∈ R2d,

which is a function on phase space R2d taking values in the space of her-
mitian 2 × 2-matrices. We refer to Chapter 1.8 in [Fo] for an exposition of
the basic properties. Here, we will restrict ourselves to mentioning marginal
distributions and the relation to expectation values.

Integration of the Wigner function with respect to momentum and position
space result in position and momentum density, respectively,∫

Rd

tr (W (ψ)(q, p)) dp = |ψ(q)|2,
∫

Rd

tr (W (ψ)(q, p)) dq = (2πε)−d |ψ̂(p/ε)|2.

Recall that Weyl quantization associates with a smooth, compactly supported
function on phase space, a ∈ C∞0 (R2d,C2×2), a bounded operator a(q,−iε∇q)
on the Hilbert space L2(Rd,C2), whose action is defined by

a(q,−iε∇q)ψ(q) =
∫

R2d

ei(q−y)·pa( 1
2 (q + y), εp)ψ(y)dydp.
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The expectation values of a Weyl quantized operator is encoded by the Wigner
function, too:∫

R2d

tr (W (ψ)(q, p)a(q, p)) dqdp = 〈ψ, a(q,−iε∇q)ψ〉L2 .

The last identity, combined with the theorem of Calderón-Vaillancourt that
asserts that the operator norm of a(q,−iε∇q) is bounded by a finite sum of
sup-norms of derivatives of a, allows one to view the Wigner function as a
distribution,

W (ψ) : a 7→
∫

R2d

tr (W (ψ)(q, p)a(q, p)) dqdp.

Let ψ be the solution of the two-level system (1). If one considers the
Wigner matrix W (ψ) with respect to an eigenbasis of the eigenvalues E±(q),
the diagonals of the matrix W (ψ) show a much more favorable behavior as
compared to the highly oscillatory wave function ψ. In the semiclassical limit
ε → 0 the diagonals can approximately be described by classical transport
and a non-adiabatic transfer of weight between them, see Theorem 1 below.
Hence, level populations, that is

‖Π±ψ(t)‖2L2 =
∫

R2d

Π±(q)W (ψ(t))(q, p)Π±(q)dqdp

or other quadratic quantities related to the projected wave functions Π±ψ(t),
can be computed efficiently, even in high dimensional situations.

2 Analysis of the dynamics

The mathematical analysis of time-dependent two-level Schrödinger systems

iε∂tψ
ε =

(
− ε2

2 ∆q + V (q)
)
ψε, ψε(0) = ψε

0 ∈ L2(Rd,C2) (2)

with crossing eigenvalues has been pioneered by Hagedorn [H]. For time-
reversible molecular systems the potential matrix is real-symmetric,

V (q) = w(q)Id +
(
v1(q) v2(q)
v2(q) −v1(q)

)
, (3)

where w, v1, v2 ∈ C∞(Rd,R) are smooth, real-valued functions with decay
properties guaranteeing the essential self-adjointness of the Hamilton operator

H = − ε2

2 ∆q + V (q).

Denoting v(q) = (v1(q), v2(q))t, the matrix V (q) has the eigenvalues
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w(q)±
√
v1(q)2 + v2(q)2 = w(q)± |v(q)|.

The crossing manifold {q ∈ Rd; v(q) = 0} of coinciding eigenvalues has codi-
mension two if one assumes

v(q) = 0 ⇒ rankDv(q) = 2,

where Dv(q) = (∇qv1(q),∇qv2(q)). These crossings are called conical inter-
sections in the chemical physics literature, see [DYK]. They seem to be the
most commonly studied type of level crossings.

The mathematical results on the dynamics near conical intersections rely
on the smallness of the semiclassical parameter 0 < ε � 1, giving dynamical
descriptions that are asymptotic with respect to ε → 0. They fall into three
groups: the propagation of Gaussian wave packets [H], of two-scale Wigner
measures [FG02, FG03, Fe, FL03], and of Wigner functions [LT, FL06]. Re-
solving the non-adiabatic transitions at the crossing manifold, all approaches
rely on some kind of normal form, which in its essence is the Landau-Zener
operator [Ze]

−iε∂s +
(
s γ
γ −s

)
, γ ∈ R.

In the framework of microlocal analysis, that is, locally in phase space,
normal forms for generic level crossings have been derived by Fermanian Kam-
merer and Gérard [FG02, FG03]. T he microlocal normal forms of Colin de
Verdière [CdV1, CdV2] even allow for superpolynomial error estimates.

2.1 Heuristics

An intuitive, but non-rigorous argument that shows the Landau-Zener oper-
ator to essentially gear the dynamics through conical intersections has been
given for the linear isotropic potential

V (q) =
(
q1 q2
q2 −q1

)
(4)

by Teufel and the second author [LT]. We will adapt these heuristics to gen-
eral conical intersections in the following. We note, that they result in an
explicit formula for the gap γ, which will be a crucial ingredient of the effec-
tive asymptotics and the subsequent numerical algorithm that we aim for.

The Schrödinger operator H is the semiclassical Weyl quantization of the
matrix-valued symbol

R2d → R2×2, (q, p) 7→ 1
2 |p|

2 + V (q).

Given its eigenvalues

R2d → R, (q, p) 7→ 1
2 |p|

2 + w(q)± |v(q)|
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one associates the two Hamiltonian systems

q̇ = p, ṗ = −∇qw(q)∓ Dv(q)v(q)
|v(q)|

(5)

and the corresponding classical flows Φt
±, which are well-defined away from

the crossing manifold.
As a first step, one formally inserts a classical trajectory (q(t), p(t)) of one

of the Hamiltonian systems into the trace-free part of the symbol of the full
operator, obtaining the purely time-dependent problem

iεφ̇(t) =
(
v1(q(t)) v2(q(t))
v2(q(t)) −v1(q(t))

)
φ(t). (6)

Such systems show non-adiabatic transitions in the region, where the gap
between the eigenvalues is minimal (see e. g. [B, HJ, BT]). A necessary condi-
tion for the gap between the eigenvalues to become minimal along the chosen
trajectory is

d
dt |v(q(t))|

2 = 0.

This condition is satisfied if the trajectory passes the hypersurface

S =
{
(q, p) ∈ R2d; Dv(q)p · v(q) = 0

}
.

Let α ∈ [−1, 1] be an angle to be determined later. A conjugation by the
half-angle rotation matrix (

cos α
2 − sin α

2
sin α

2 cos α
2

)
transforms problem (6) to

iεφ̇(t) =
(

(cosα, sinα)t · v(q(t)) (cosα, sinα)t ∧ v(q(t))
(cosα, sinα)t ∧ v(q(t)) −(cosα, sinα)t · v(q(t))

)
φ(t),

where x ∧ y = x1y2 − x2y1 denotes the symplectic product of the two vectors
x, y ∈ R2. Assuming that the chosen trajectory passes the hypersurface of
minimal gap through the point (q∗, p∗) at time t = 0, one linearizes,

v(q(t)) = v(q∗) + tDv(q∗)p∗ +O(t2).

Aiming at a Landau-Zener problem with the diagonals linearly depending on
time and the off-diagonals constant, one chooses the rotation angle as

α = arccos
(
∇qv1(q∗) · p∗
|Dv(q∗)p∗|

)
= arcsin

(
∇qv2(q∗) · p∗
|Dv(q∗)p∗|

)
.

Since Dv(q∗)p∗ · v(q∗) = 0, the linearized system then reads as
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iεφ̇(t) =

(
t|Dv(q∗)p∗| Dv(q∗)p∗∧v(q∗)

|Dv(q∗)p∗|
Dv(q∗)p∗∧v(q∗)
|Dv(q∗)p∗| −t|Dv(q∗)p∗|

)
φ(t).

If |Dv(q∗)p∗| � 0, one sets a new semiclassical parameter ε̃ = ε/|Dv(q∗)p∗|,
and obtains the Landau-Zener problem

iε̃φ̇(t) =
(
t γ
γ −t

)
φ(t)

with gap

γ =
Dv(q∗)p∗ ∧ v(q∗)
|Dv(q∗)p∗|2

.

Let φ±(t) denote the components of the vector φ(t) with respect to the
eigenbasis of the Landau-Zener matrix, and put φ±(±∞) = limt→±∞ φ±(t).
If (

φ+(−∞)
φ−(−∞)

)
=
(

1
0

)
or

(
φ+(−∞)
φ−(−∞)

)
=
(

0
1

)
,

then (
|φ+(+∞)|2
|φ−(+∞)|2

)
=
(

1− T T
T 1− T

)(
|φ+(−∞)|2
|φ−(−∞)|2

)
with a transition rate

T ∼ exp
(
−π
ε̃
γ2
)
, ε̃→ 0.

In particular, the Landau-Zener rate T exhibits that the non-adiabatic tran-
sitions are of leading order in ε̃ if the chosen trajectory experiences a gap γ
that is of order

√
ε̃.

Remark 1. We note that even though the time-dependent problem (6) we
started with is formulated just in terms of the position coordinate q(t), the
resulting Landau-Zener problem has a gap γ that depends on phase space
information, namely the point (q∗, p∗) at which the trajectory attains the
minimal gap between the eigenvalues w(q)± |v(q)|.

2.2 Branching process

The heuristics motivates the following definition of random trajectories and a
corresponding Markov process for effectively describing the dynamics through
conical intersections.

One attaches to points (q, p) ∈ R2d in phase space a label −1 or +1,
indicating reference to the eigenvalue w(q)−|v(q)| or w(q)+ |v(q)|. Moreover,
one chooses a positive number R > 0, defining the set{

(q, p) ∈ R2d; |v(q)| ≤ R
√
ε
}
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as a distinguished tubular neighborhood of the crossing manifold. For labelled
phase space points (q, p, j) ∈ R2d × {−1,+1}, one sets

T (q,p,j) : [0,+∞) → R2d × {−1,+1}

such that T (q,p,j)(t) = (Φt
j(q, p), j) as long as

|v(qj(t))| > R
√
ε or Dv(qj(t))pj(t) · v(qj(t)) 6= 0.

A jump from j to −j occurs with probability

T (q∗, p∗) = exp
(
−π
ε

(Dv(q∗)p∗ ∧ v(q∗))2

|Dv(q∗)p∗|3

)
(7)

whenever Φt
j(q, p) hits the manifold of minimal gap

S =
{
(q, p) ∈ R2d; Dv(q)p · v(q) = 0

}
.

at time t in a point (q∗, p∗) ∈ S with |v(q∗)| ≤ R
√
ε.

The randomized evolution T (q,p,j)(t) defines a Markov process. The asso-
ciated backwards semi-group Lt is given by its action on a class of continuous
scalar-valued functions a = a(q, p, j) satisfying suitable boundary conditions
at the manifold of minimal gap S,

Lta(q, p, j) := E(q,p,j)a
(
T (q,p,j)(t)

)
,

see [LT, FL06]. This definition naturally extends to matrix-valued functions of
the form a = a+Π+ + a−Π− with a± ∈ C∞0 (R2d \ S,C), that is, to functions
that commute with the potential matrix V . By duality, the semigroup acts on
Wigner functions also,

LtW (ψ) : a 7→
∫

R2d

tr
(
W (ψ)(q, p)(Lta)(q, p)

)
dqdp.

Theorem 1 ([LT, FL06]) Let (ψε
0)ε>0 be a bounded sequence in L2(Rd,C2)

such that Π−ψε
0 = 0 and there exists δ > 0 with

lim
ε→0

∫
Sδ

|W (ψε
0)(q, p)| dqdp = 0,

where Sδ = {(q, p) ∈ R2d; |v(q)|, |Dv(q)p · v(q)| ≤ δ}. Let V be a matrix with
conically intersecting eigenvalues as given in (3). Suppose, that q 7→ |v(q)| is
convex, and that Dv(q)∇w(q) · v(q) ≤ 0 for all q ∈ Rd.
Then, for all T > 0, the solution ψε(t) of the Schrödinger equation (2) with
initial data ψε(0) = ψε

0 satisfies

sup
t∈[0,T ]

∫
R2d

(
W (ψε(t))− LtW (ψε

0)
)
a(q, p) dqdp

= O(R−1) +O(R3
√
ε) +O(

√
ε | ln ε|)

for all a = a+Π+ + a−Π− with a± ∈ C∞0 (R2d \ S,C).
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Remark 2. Note, that the error is minimal as R = ε−1/8 and is of order ε1/8.

Remark 3. The assumptions on the potential V (q) guarantee that minus-
trajectories issued from the upper level never meet the crossing again. Hence,
the system dealt with does not show any interlevel interferences, which could
not be resolved by merley working on the diagonal of the Wigner matrix.

Remark 4. The assumptions on the initial data (ψε
0)ε>0 ensure that the wave

function does not localize near the manifold of minimal gap and the crossing
manifold initially. This is due to the semigroup encorporating only an effective
treatment of the non-adiabatic transitions, which becomes valid when the
solution has passed by the crossing and the manifold of minimal gap.

In [LT], Theorem 1 has been proven for the linear isotropic potential
(4) with an error of o(1) as ε → 0. The proof for general potentials pro-
viding the error bound with respect to ε and R is given in [FL06]. It falls
into two parts: Away from the crossing, there is only classical transport. One
shows by semiclassical Weyl calculus that the error of propagation is of order
O(R−1) + O(

√
ε). Near the crossing, non-adiabatic transitions become rele-

vant. For proving the correctness of the asymptotic transition rates one resorts
to a refined version of the microlocal normal form of [CdV1].

2.3 Surface hopping algorithm

The semigroup Lt suggests a numerical algorithm that can be seen as a rigor-
ous counterpart to the surface hopping algorithms of chemical physics. Such
algorithms have been introduced by Tully and Preston in [TP] for studies of
molecular collisions. To our knowledge Theorem 1 is the first mathematically
rigorous justification for such an approach. For high dimensional problems
in photochemistry surface hopping seems to be one of the most popular al-
gorithms employed. We refer to the review [StTh] as a pointer to the vast
chemical literature on algorithms of this type.

A numerical realization of the semigroup Lt is achieved by the following
steps: one projects the initial wave function to the energy levels and com-
putes the associated Wigner functions. After sampling the Wigner functions,
one propagates along the classical trajectories of the Hamiltonian systems (5)
and opens up a new trajectory on the other level whenever a trajectory passes
through the hypersurface of minimal gap. When splitting up, the weight as-
sociated with the trajectories is distributed according to the Landau-Zener
transition coefficient (7).

[LST] thoroughly validates this algorithm for systems with linear isotropic
potentials. Figure 2 shows the relative error of level populations for the fol-
lowing test case: the initial data are Gaussian wave packets associated with
the upper level localized at a distance of 5

√
ε from the crossing with aver-

age momentum of order one. The time evolution stops at time t = 10
√
ε.
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The level populations ‖Π±ψ(t)‖2L2 are computed by the rigorous surface hop-
ping algorithm as well as by a numerically converged Strang splitting scheme.
As a function of the semiclassical parameter, the resulting absolute error is
bounded by 1

2

√
ε. All the other experiments of [LST] show a comparable error

of order
√
ε, indicating, that the ε1/8 error bound of Theorem 1 is not sharp.

Fig. 2. The absolute error of the surface hopping algorithm versus a Strang splitting
scheme for level populations with respect to the semiclassical parameter ε. The
dashed line is the function 1

2

√
ε, while the solid line is the absolute error for the final

populations on the two levels.

3 Spectral study

Mathematically rigorous spectral studies of operators with crossing eigenval-
ues have aimed at resolvent estimates [J03, J05] and bounds on the number of
resonances [N96, N01, N03]. More explicit, quantitative investigations show-
ing a clear spectral fingerprint of non-adiabatic origin have been undertaken
by Avron and Gordon in the zero energy regime [AG1, AG2]. Complemen-
tarily to these results, the joint work of the second author with Fujiié and
Nédélec [FLN] deals with Bohr-Sommerfeld conditions for energies bounded
away from zero.

The common model operator of [AG1, AG2, FLN] has a linear isotropic
potential matrix with conically intersecting eigenvalues,

H = −ε2∆q + V (q) = −ε2∆q +
(
q1 q2
q2 −q1

)
.
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Its scalar counterparts are the one-level operators

H± = −ε2∆q ± |q|.

The upper level operator H+ has a confining potential, which is bounded
from below by zero and increases to infinity as |q| → ∞. Hence, H+ has purely
discrete spectrum with strictly positive eigenvalues (see Theorems XIII.47 and
XIII.67 in [RS]). The lower level operator H− has a repulsive potential. Its
commutator with the generator of dilations D = 1

2i (q ·∇q +∇q · q) is positive,

[H−, iD] = −2∆q + |q|,

and yields a global Mourre estimate. Hence, H− has purely absolutely contin-
uous spectrum (see Corollary 4.10 in [CFKS]). The full operator H, however,
inherits the purely absolutely continuous spectrum of H−, while echoing the
discrete spectrum of H+ with resonances close to the real axis.

The resonances of the operator H are defined by complex dilation (see
Theorem 2.1 in [N96]). They are the eigenvalues E ∈ C of the complex scaled
Hamiltonian

Hθ = −ε2e−2iθ∆q + eiθV (q),

which is a non-selfadjoint operator with discrete spectrum in the lower half-
plane independent of the dilation parameter θ ∈]0, π

3 [.

Remark 5. For a large class of scalar Schrödinger operators, resonances defined
by complex dilation have been identified with the poles of a suitable contin-
uation of the resolvent or of the scattering matrix. The underlying physical
picture is that of a slowly decaying state, whose life-time is set by the imagi-
nary part of the resonance. We refer to Chapter 8 in [CFKS], Chapter 16 in
[HSi], or the review [Zw] as introductory reading for the theory of resonances.

A resonance E of H is determined by solving Hψ = Eψ in the distri-
butional sense and validating decay and regularity properties of the dilated
resonant state q 7→ ψ(e−iθq). One uses the radial symmetry in V (q) to reduce
the partial differential operator H to a direct sum of ordinary differential
systems: the operator P is unitarily equivalent to⊕

ν∈Z+ 1
2

Hν(r,−iε∂r; ε), Hν(r, ρ; ε) =
(
r2 − ρ εν/r
εν/r r2 + ρ

)
, (8)

where (r, ρ) ∈ R+×R. Nédélec [N96] has derived this equivalence by a Fourier
transformation, a change to polar coordinates (r, φ) ∈ R+ × T, a conjugation
by the half-angle rotation matrix(

cos φ
2 − sin φ

2

sin φ
2 cos φ

2

)
,



Energy level crossings 13

and a final Fourier series ansatz in the angular variable φ. A similar decom-
position labelled by half-integers has been obtained by Avron and Gordon
[AG1, AG2], using the commutation relation of H with an angular momen-
tum operator L,

[H,L] = 0, L = q ∧ (−iε∇q) + 1
2

(
0 i
−i 0

)
.

Both decompositions share the fact, that the half-integer labelling turns
the conical intersection q 7→ ±|q| into a family of avoided crossings. However,
while in [AG1, AG2] the ordinary differential systems are solved in the zero
energy regime in terms of generalized hypergeometric functions, the aim of
[FLN] is an explicit asymptotic analysis (ε→ 0) of non-zero energies by means
of an exact WKB method.

According to the decomposition (8) one associates with a resonance E ofH
an angular momentum number ν ∈ Z + 1

2 if E corresponds to a distributional
solution of the ordinary differential problem

Hν(r,−iε∂r; ε)u = Eu,

such that r 7→ u(e−iθr) satisfies appropriate boundary conditions as r → 0
and r → +∞. Consider E ∈]a, b[ for positive numbers 0 < a < b. If ε > 0 is
sufficiently small, the energy surface{

(r, ρ) ∈ R+ × R; det (Hν(r, ρ; ε)− E) = 0
}

consists of two connected curves, a closed simple one and one being un-
bounded. Let Aν(E, ε) be the action associated with the closed curve,

Aν(E, ε) = 2
∫ r1

r0

√
det(Hν(r, 0; ε)− E) dr,

where 0 < r0 < r1 are the first and second positive zero of the mapping
r 7→ det(Hν(r, 0; ε)−E), and the square root is taken positive. As a function
of E, the action Aν(E, ε) is extended analytically into a complex neighborhood
of the interval ]a, b[. The first result is the following Bohr-Sommerfeld type
quantization condition of resonances with fixed angular momentum.

Theorem 2 ([FLN]) Let E0 > 0 and ν ∈ Z + 1
2 be given. Then there exist

δ > 0, ε0 > 0, and a function c(E, ε) : {(E, ε) ∈ C×]0, ε0[; |E −E0| < δ} → C
with c(E, ε) → 0 uniformly in E as ε → 0, such that E is a resonance of
H = −ε2∆q + V (q) with angular momentum ν if and only if (E, ε) satisfies
the following quantization condition:√

πε

2
ν e−iπ/4E−3/4 eiAν(E,ε)/ε + 1 = c(E, ε). (9)
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To our knowledge, Theorem 2 is the first Bohr-Sommerfeld quantization
condition for a Schrödinger system with crossing eigenvalues. The prefactor
before the exponential of the action carrying the second scale

√
ε is a clear

signature of non-adiabaticity, stemming from a connection formula involving
the Landau-Zener problem

iε∂ru =
(
r −γ
γ −r

)
u, γ = ε ν√

2
E−3/4 +O(ε2). (10)

For the proof of Theorem 2, the exact WKB method of Gérard and Grigis
[GG] is extended from scalar Schrödinger equations to a class of 2 × 2 first
order differential systems, covering the case Hν(r,−iε∂r; ε)u = Eu. The exact
WKB solutions are of the form

u(r) = e±iz(r)/εw(r), z(r) =
∫ r

r∗

√
det(Hν(s, 0; ε)− E) ds.

They are locally defined away from turning points, which are the zeros of
the mapping r 7→ det(Hν(r, 0; ε) − E). For E ∈]a, b[, there are three positive
turning points r0 < r1 < r2, where r0 tends to zero, while r1 and r2 coalesce
at
√
E as ε→ 0.

For obtaining global solutions, one connects the exact WKB solutions at
the turning points, using the good ε-asymptotics of the amplitude vector w.
More precisely, one constructs an exact solution, which vanishes at the origin,
and represents it after several connection procedures as a linear combination
of solutions with controlled behavior at infinity. For r → +∞, there is a fun-
damental system of solutions u±∞, such that r 7→ u+

∞(e−iθr) is exponentially
growing and r 7→ u−∞(e−iθr) exponentially decaying. The quantization for-
mula (9) corresponds to the condition that the connection coefficient of the
exponentially growing solution u+

∞ vanishes.
The origin is a regular singular point of the equationHν(r,−iε∂r; ε)u = Eu

with indices ±ν. Moreover, the first turning point r0 tends to zero as ε → 0.
One constructs an exact WKB solution in a small complex neighborhood of
the origin, which corresponds to the index +ν. Studying the two parameter
asymptotics of this solution as (r, ε) → (0, 0), one encounters the same diffi-
culties as in the context of the Langer modification for the radial Schrödinger
equation, see also [FR]. The o(1) error estimate in Theorem 2 originates just
from here. The rest of the proof gives better control on the convergence rate.

At r =
√
E, the second and third turning points r1 and r2 coalesce as

ε→ 0. The connection formula at this double turning point is calculated using
a microlocal reduction to a normal form. Microlocally near (r, ρ) = (

√
E, 0),

the equation Hν(r,−iε∂r; ε)u = Eu looks like the Landau-Zener problem (10).
A further reduction step leads to the saddle-point problem

r(−iε∂r)u = |γ|2
2 u.
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For this problem exact microlocal connection formulas are known [CdVP, R]
and one has to lift them to the exact WKB solutions. The second scale

√
ε in

the quantization condition (9) originates from this connection.
An asymptotic study (Proposition 8.2 in [FLN]) of the action yields

Aν(E, ε) = 4
3E

3/2 + πνε+O(ε2| ln ε|) (ε→ 0).

Plugging this expansion into the Bohr-Sommerfeld condition (9), one is mo-
tivated to define the following family of almost horizontal sequences:

Γν(a, b; ε) =
{
λ ∈ C; λ = λkνε− i 3

8

(
ε ln 1

ε − ε ln πν2

2λkνε

)
,

k ∈ Z s.t. λkνε ∈]a, b[
}

with
λkν = 3π

16 (8k − 4ν + 5) (k ∈ Z, ν ∈ Z + 1
2 ).

Since λkνε ∈]a, b[, the second term of the imaginary part of λ ∈ Γν(a, b; ε)
is of O(ε) and smaller than the first term − 3

8ε ln
1
ε . Hence, Γν(a, b; ε) is an

almost horizontal sequence in the lower half-plane with distance of O(ε ln 1
ε )

from the real axis. The asymptotic distribution of resonances with real part
in the positive interval ]a, b[ reads as follows:

Theorem 3 ([FLN]) Let N ∈ N and 0 < a < b be given. Then there is
ε0 > 0 and a positive function c : ]0, ε0[→ R+ with c(ε) = o(ε) as ε → 0 such
that for each λ ∈

⋃
ν≤N Γν(a, b; ε) there exists one and only one resonance of

H = −ε2∆q + V (q) within the set
{
E ∈ C; |E − λ2/3| < c(ε)

}
.
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Fig. 3. Resonances of the model operator H = −ε2∆q + V (q). The parameter
k lies in {11, 12, . . . , 60}, while ν is chosen in {1.5, 2.5, . . . , 5.5}. The semiclassical
parameter ε varies from 10−3 to 1.
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The plots in Figure 3 illustrate the distorted lattice of resonances given by
Theorem 3. The larger the angular momentum number ν is taken, the closer
the resonance is to the real axis and the longer the life time of the correspond-
ing resonant states will be. This observation is in wonderful agreement with
the dynamical properties of the operator P . The one-level operators H± in-
duce Hamiltonian systems conserving angular momentum q∧p = q1p2− q2p1,
which also encodes how close classical trajectories arrive near the crossing
manifold {q = 0}. On the one hand, a high angular momentum number ν
of a resonance mirrors a periodic orbit of the upper level with high angu-
lar momentum. Such orbits in turn imply existence of localized quasimodes
and long-living resonant states. On the other hand, small angular momentum
numbers ν correspond to orbits close to the crossing manifold. Close to the
crossing, non-adiabatic transitions to the unbounded motion of the minus-
system are possible. In this regime shorter life-times and resonances far away
from the real axis have to be expected.
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[CdVP] Y. Colin de Verdière, B. Parisse. Équilibre instable en régime semi-classique.
I. Concentration microlocale. Comm. Par. Diff. Eq., 19(9&10): 1535–1563, 1994.

[CFKS] H. Cycon, R. Froese, W. Kirsch, B. Simon. Schrödinger operators with
application to quantum mechanics and global geometry. Texts and monographs
in physics, Springer-Verlag, 1987.
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