57,687 research outputs found

    Ontology acquisition and exchange of evolutionary product-brokering agents

    Get PDF
    Agent-based electronic commerce (e-commerce) has been booming with the development of the Internet and agent technologies. However, little effort has been devoted to exploring the learning and evolving capabilities of software agents. This paper addresses issues of evolving software agents in e-commerce applications. An agent structure with evolution features is proposed with a focus on internal hierarchical knowledge. We argue that knowledge base of agents should be the cornerstone for their evolution capabilities, and agents can enhance their knowledge bases by exchanging knowledge with other agents. In this paper, product ontology is chosen as an instance of knowledge base. We propose a new approach to facilitate ontology exchange among e-commerce agents. The ontology exchange model and its formalities are elaborated. Product-brokering agents have been designed and implemented, which accomplish the ontology exchange process from request to integration

    Cooperative co-evolution of GA-based classifiers based on input increments

    Get PDF
    Genetic algorithms (GAs) have been widely used as soft computing techniques in various applications, while cooperative co-evolution algorithms were proposed in the literature to improve the performance of basic GAs. In this paper, a new cooperative co-evolution algorithm, namely ECCGA, is proposed in the application domain of pattern classification. Concurrent local and global evolution and conclusive global evolution are proposed to improve further the classification performance. Different approaches of ECCGA are evaluated on benchmark classification data sets, and the results show that ECCGA can achieve better performance than the cooperative co-evolution genetic algorithm and normal GA. Some analysis and discussions on ECCGA and possible improvement are also presented

    A multi-agent architecture for electronic payment

    Get PDF
    The Internet has brought about innumerable changes to the way enterprises do business. An essential problem to be solved before the widespread commercial use of the Internet is to provide a trustworthy solution for electronic payment. We propose a multi-agent mediated electronic payment architecture in this paper. It is aimed at providing an agent-based approach to accommodate multiple e-payment schemes. Through a layered design of the payment structure and a well-defined uniform payment interface, the architecture shows good scalability. When a new e-payment scheme or implementation is available, it can be plugged into the framework easily. In addition, we construct a framework allowing multiple agents to work cooperatively to realize automation of electronic payment. A prototype has been built to illustrate the functionality of this design. Finally we discuss the security issues

    Class decomposition for GA-based classifier agents – A Pitt approach

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    Anti-charmed pentaquark from B decays

    Full text link
    We explore the possibility of observing the anti-charmed pentaquark state from the Θcnˉπ+\Theta_c \bar{n} \pi^+ decay of BB meson produced at BB-factory experiments. We first show that the observed branching ratio of the B+B^+ to Λcpπ+ \Lambda^-_c p \pi^+, as well as its open histograms, can be remarkably well explained by assuming that the decay proceeds first through the π+Dˉ0\pi^+ \bar{D}^0 (or Dˉ0\bar{D}^{*0}) decay, whose branching ratios are known, and then through the subsequent decay of the virtual Dˉ0\bar{D}^0 or Dˉ0\bar{D}^{*0} mesons to Λcp\Lambda_c^- p, whose strength are calculated using previously fit hadronic parameters. We then note that the Θc\Theta_c can be similarly produced when the virtual Dˉ0\bar{D}^0 or Dˉ0\bar{D}^{*0} decay into an anti-nucleon and a Θc\Theta_c. Combining the present theoretical estimates for the ratio gDNΛc/gDNΘc13g_{D N \Lambda_c} / g_{D N \Theta_c} \sim 13 and gDNΘc1/3gDNΘcg_{D^* N \Theta_c} \sim {1/3} g_{D N \Theta_c}, we find that the anti-charmed pentaquark Θc\Theta_c, which was predicted to be bound by several model calculations, can be produced via B+Θcnˉπ+B^+ \to \Theta_c \bar{n} \pi^+, and be observed from the BB-factory experiments through the weak decay of ΘcpK+ππ\Theta_c \to p K^+ \pi^- \pi^- .Comment: 4 pages, 4 figures, Revised version to be published in Physical Review Letter

    Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution.

    Get PDF
    We demonstrate lensfree holographic microscopy on a chip to achieve approximately 0.6 microm spatial resolution corresponding to a numerical aperture of approximately 0.5 over a large field-of-view of approximately 24 mm2. By using partially coherent illumination from a large aperture (approximately 50 microm), we acquire lower resolution lensfree in-line holograms of the objects with unit fringe magnification. For each lensfree hologram, the pixel size at the sensor chip limits the spatial resolution of the reconstructed image. To circumvent this limitation, we implement a sub-pixel shifting based super-resolution algorithm to effectively recover much higher resolution digital holograms of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. We demonstrate the success of this pixel super-resolution approach by imaging patterned transparent substrates, blood smear samples, as well as Caenoharbditis Elegans

    The Effects of Different Footprint Sizes and Cloud Algorithms on the Top-Of-Atmosphere Radiative Flux Calculation from the Clouds and Earths Radiant Energy System (CERES) Instrument on Suomi National Polar-Orbiting Partnership (NPP)

    Get PDF
    Only one Clouds and Earths Radiant Energy System (CERES) instrument is onboard the Suomi National Polar-orbiting Partnership (NPP) and it has been placed in cross-track mode since launch; it is thus not possible to construct a set of angular distribution models (ADMs) specific for CERES on NPP. Edition 4 Aqua ADMs are used for flux inversions for NPP CERES measurements. However, the footprint size of NPP CERES is greater than that of Aqua CERES, as the altitude of the NPP orbit is higher than that of the Aqua orbit. Furthermore, cloud retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), which are the imagers sharing the spacecraft with NPP CERES and Aqua CERES, are also different. To quantify the flux uncertainties due to the footprint size difference between Aqua CERES and NPP CERES, and due to both the footprint size difference and cloud property difference, a simulation is designed using the MODIS pixel-level data, which are convolved with the Aqua CERES and NPP CERES point spread functions (PSFs) into their respective footprints. The simulation is designed to isolate the effects of footprint size and cloud property differences on flux uncertainty from calibration and orbital differences between NPP CERES and Aqua CERES. The footprint size difference between Aqua CERES and NPP CERES introduces instantaneous flux uncertainties in monthly gridded NPP CERES measurements of less than 4.0 W/sq. m for SW (shortwave) and less than 1.0 W/sq. m for both daytime and nighttime LW (longwave). The global monthly mean instantaneous SW flux from simulated NPP CERES has a low bias of 0.4 W/sq. m when compared to simulated Aqua CERES, and the root-mean-square (RMS) error is 2.2 W/sq. m between them; the biases of daytime and night- time LW flux are close to zero with RMS errors of 0.8 and 0.2 W/sq. m. These uncertainties are within the uncertainties of CERES ADMs. When both footprint size and cloud property (cloud fraction and optical depth) differences are considered, the uncertainties of monthly gridded NPP CERES SW flux can be up to 20 W/sq. m in the Arctic regions where cloud optical depth retrievals from VIIRS differ significantly from MODIS. The global monthly mean instantaneous SW flux from simulated NPP CERES has a high bias of 1.1 W/sq. m and the RMS error increases to 5.2 W/sq. m. LW flux shows less sensitivity to cloud property differences than SW flux, with uncertainties of about 2 W/sq. m in the monthly gridded LW flux, and the RMS errors of global monthly mean daytime and nighttime fluxes increase only slightly. These results highlight the importance of consistent cloud retrieval algorithms to maintain the accuracy and stability of the CERES climate data record
    corecore