57,687 research outputs found
Ontology acquisition and exchange of evolutionary product-brokering agents
Agent-based electronic commerce (e-commerce) has been booming with the development of the Internet and agent technologies. However, little effort has been devoted to exploring the learning and evolving capabilities of software agents. This paper addresses issues of evolving software agents in e-commerce applications. An agent structure with evolution features is proposed with a focus on internal hierarchical knowledge. We argue that knowledge base of agents should be the cornerstone for their evolution capabilities, and agents can enhance their knowledge bases by exchanging knowledge with other agents. In this paper, product ontology is chosen as an instance of knowledge base. We propose a new approach to facilitate ontology exchange among e-commerce agents. The ontology exchange model and its formalities are elaborated. Product-brokering agents have been designed and implemented, which accomplish the ontology exchange process from request to integration
Cooperative co-evolution of GA-based classifiers based on input increments
Genetic algorithms (GAs) have been widely used as soft computing techniques in various
applications, while cooperative co-evolution algorithms were proposed in the literature to improve the
performance of basic GAs. In this paper, a new cooperative co-evolution algorithm, namely ECCGA, is
proposed in the application domain of pattern classification. Concurrent local and global evolution and
conclusive global evolution are proposed to improve further the classification performance. Different
approaches of ECCGA are evaluated on benchmark classification data sets, and the results show that
ECCGA can achieve better performance than the cooperative co-evolution genetic algorithm and normal GA.
Some analysis and discussions on ECCGA and possible improvement are also presented
A multi-agent architecture for electronic payment
The Internet has brought about innumerable changes to the way enterprises do business. An essential problem to be solved before the widespread commercial use of the Internet is to provide a trustworthy solution for electronic payment. We propose a multi-agent mediated electronic payment architecture in this paper. It is aimed at providing an agent-based approach to accommodate multiple e-payment schemes. Through a layered design of the payment structure and a well-defined uniform payment interface, the architecture shows good scalability. When a new e-payment scheme or implementation is available, it can be plugged into the framework easily. In addition, we construct a framework allowing multiple agents to work cooperatively to realize automation of electronic payment. A prototype has been built to illustrate the functionality of this design. Finally we discuss the security issues
Class decomposition for GA-based classifier agents – A Pitt approach
Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed
An incremental approach to genetic algorithms based classification
Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed
Recommended from our members
Cost-Effectiveness of Advanced Imaging Technologies in the Presurgical Workup of Epilepsy.
The cost-effectiveness and benefit of many diagnostic tests used in the presurgical evaluation for persons with epilepsy is for the most part uncertain as is their influence on decision-making. The options we have at our disposal are ever increasing. Advanced imaging modalities aim to improve surgical candidacy by helping us better define the epileptogenic zone and optimize surgical planning. However, judicious use is important. Randomized controlled trials delineating which mode of investigation is superior are lacking. Presurgical tests do have incremental value by increasing surgical candidacy and refining surgical planning. The yield of additional imaging will increase with complex localization. However, every case must be tailored by hypothesis, cost, and accessibility. Future studies using a quantitative cost-benefit framework are needed to determine the cost-effectiveness of advanced diagnostic tests (beyond magnetic resonance imaging) in the presurgical evaluation of those with epilepsy
Anti-charmed pentaquark from B decays
We explore the possibility of observing the anti-charmed pentaquark state
from the decay of meson produced at -factory
experiments. We first show that the observed branching ratio of the to , as well as its open histograms, can be remarkably well
explained by assuming that the decay proceeds first through the (or ) decay, whose branching ratios are known, and
then through the subsequent decay of the virtual or
mesons to , whose strength are calculated using previously fit
hadronic parameters. We then note that the can be similarly produced
when the virtual or decay into an anti-nucleon and a
. Combining the present theoretical estimates for the ratio and , we find that the anti-charmed pentaquark , which was
predicted to be bound by several model calculations, can be produced via , and be observed from the -factory experiments
through the weak decay of .Comment: 4 pages, 4 figures, Revised version to be published in Physical
Review Letter
Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution.
We demonstrate lensfree holographic microscopy on a chip to achieve approximately 0.6 microm spatial resolution corresponding to a numerical aperture of approximately 0.5 over a large field-of-view of approximately 24 mm2. By using partially coherent illumination from a large aperture (approximately 50 microm), we acquire lower resolution lensfree in-line holograms of the objects with unit fringe magnification. For each lensfree hologram, the pixel size at the sensor chip limits the spatial resolution of the reconstructed image. To circumvent this limitation, we implement a sub-pixel shifting based super-resolution algorithm to effectively recover much higher resolution digital holograms of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. We demonstrate the success of this pixel super-resolution approach by imaging patterned transparent substrates, blood smear samples, as well as Caenoharbditis Elegans
The Effects of Different Footprint Sizes and Cloud Algorithms on the Top-Of-Atmosphere Radiative Flux Calculation from the Clouds and Earths Radiant Energy System (CERES) Instrument on Suomi National Polar-Orbiting Partnership (NPP)
Only one Clouds and Earths Radiant Energy System (CERES) instrument is onboard the Suomi National Polar-orbiting Partnership (NPP) and it has been placed in cross-track mode since launch; it is thus not possible to construct a set of angular distribution models (ADMs) specific for CERES on NPP. Edition 4 Aqua ADMs are used for flux inversions for NPP CERES measurements. However, the footprint size of NPP CERES is greater than that of Aqua CERES, as the altitude of the NPP orbit is higher than that of the Aqua orbit. Furthermore, cloud retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), which are the imagers sharing the spacecraft with NPP CERES and Aqua CERES, are also different. To quantify the flux uncertainties due to the footprint size difference between Aqua CERES and NPP CERES, and due to both the footprint size difference and cloud property difference, a simulation is designed using the MODIS pixel-level data, which are convolved with the Aqua CERES and NPP CERES point spread functions (PSFs) into their respective footprints. The simulation is designed to isolate the effects of footprint size and cloud property differences on flux uncertainty from calibration and orbital differences between NPP CERES and Aqua CERES. The footprint size difference between Aqua CERES and NPP CERES introduces instantaneous flux uncertainties in monthly gridded NPP CERES measurements of less than 4.0 W/sq. m for SW (shortwave) and less than 1.0 W/sq. m for both daytime and nighttime LW (longwave). The global monthly mean instantaneous SW flux from simulated NPP CERES has a low bias of 0.4 W/sq. m when compared to simulated Aqua CERES, and the root-mean-square (RMS) error is 2.2 W/sq. m between them; the biases of daytime and night- time LW flux are close to zero with RMS errors of 0.8 and 0.2 W/sq. m. These uncertainties are within the uncertainties of CERES ADMs. When both footprint size and cloud property (cloud fraction and optical depth) differences are considered, the uncertainties of monthly gridded NPP CERES SW flux can be up to 20 W/sq. m in the Arctic regions where cloud optical depth retrievals from VIIRS differ significantly from MODIS. The global monthly mean instantaneous SW flux from simulated NPP CERES has a high bias of 1.1 W/sq. m and the RMS error increases to 5.2 W/sq. m. LW flux shows less sensitivity to cloud property differences than SW flux, with uncertainties of about 2 W/sq. m in the monthly gridded LW flux, and the RMS errors of global monthly mean daytime and nighttime fluxes increase only slightly. These results highlight the importance of consistent cloud retrieval algorithms to maintain the accuracy and stability of the CERES climate data record
- …
