
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 2, APRIL 2005 227

An Incremental Approach to
Genetic-Algorithms-Based Classification

Sheng-Uei Guan and Fangming Zhu

Abstract—Incremental learning has been widely addressed
in the machine learning literature to cope with learning tasks
where the learning environment is ever changing or training
samples become available over time. However, most research
work explores incremental learning with statistical algorithms or
neural networks, rather than evolutionary algorithms. The work
in this paper employs genetic algorithms (GAs) as basic learning
algorithms for incremental learning within one or more classifier
agents in a multiagent environment. Four new approaches with
different initialization schemes are proposed. They keep the old
solutions and use an “integration” operation to integrate them
with new elements to accommodate new attributes, while biased
mutation and crossover operations are adopted to further evolve
a reinforced solution. The simulation results on benchmark
classification data sets show that the proposed approaches can
deal with the arrival of new input attributes and integrate them
with the original input space. It is also shown that the proposed
approaches can be successfully used for incremental learning and
improve classification rates as compared to the retraining GA.
Possible applications for continuous incremental training and
feature selection are also discussed.

Index Terms—Classifier agents, genetic algorithms (GAs), incre-
mental learning.

I. INTRODUCTION

T RADITIONAL machine learning techniques have focused
on nonincremental learning tasks. It is assumed that the

problem to be solved is fixed and the training set is constructed
a priori, so the learning algorithm stops when the training set is
fully processed. On the other hand, incremental learning is an ad
hoc learning technique whereby learning occurs with the arrival
of new data rather than from a fixed set of data, i.e., it is a con-
tinuing process rather than a one-shot experience. Incremental
learning is more suitable for software agents, as most learning
tasks for agents are incremental and agents must adapt to the
ever-changing environment incrementally and continuously [1],
[2].

Pattern classification problems have been widely used as
traditional formulation of machine learning problems and re-
searched with different machine learning approaches including
statistical methods [3], neural networks [4]–[6], genetic algo-
rithms [7], [8], fuzzy sets [9], [10], and cellular automata [11].
In recent years, hybrid approaches are also emerging, as they
are better in solving more complicated classification problems

Manuscript received April 5, 2004; revised August 7, 2004 and December 6,
2004. This paper was recommended by Associate Editor H. Takagi.

The authors are with the Department of Electrical and Computer En-
gineering, National University of Singapore, Singapore 119260 (e-mail:
eleguans@nus.edu.sg; elezfm@nus.edu.sg).

Digital Object Identifier 10.1109/TSMCB.2004.842247

[12]. We use classification problems as our research vehicle
for incremental learning, and call software entities that have
the ability to undertake certain classification tasks as classifier
agents.

Incremental learning has attracted much research effort in the
literature. However, most work explores incremental learning
with statistical algorithms [3] or neural networks [4], and none
touches on the use of evolutionary algorithms. This paper em-
ploys genetic algorithms (GAs) as basic learning algorithms for
incremental learning.

Evolutionary algorithms, such as evolutionary programming
[13], genetic programming [14], evolution strategies [15], and
genetic algorithms [16], have attracted much interest in various
applications. They have been shown to be effective in exploring
large and complex spaces in an adaptive way, which reflects
some of the key aspects of natural evolution mechanisms such as
reproduction, crossover, and mutation. Among them, GAs have
been widely used in the literature as an evolutionary way to learn
classification rules, either through supervised or unsupervised
learning [17].

Most work in the literature focuses on batch-mode, static do-
main, where the attributes, classes and training data are all deter-
mined in advance and the task of the GAs is to find out the best
rule set which classifies the available instances with the lowest
error rate [18]. However, some learning tasks do not fit into
this static model. As the real-world situation is more dynamic
and keeps changing, a classifier agent is actually exposed to a
changing environment. Therefore, it needs to evolve its solution
to adapt to various changes. In general, there are three types of
changes in classification problems. First, new training data may
be available for the solution to be refined. Second, new attributes
may be found to be possible contributors for the classification
problem. Third, new classes may become possible categories
for classification. To deal with these types of changes, classifier
agents have to learn incrementally and adapt to the new environ-
ment gradually. This paper chooses the arrival of new attributes
as the target for incremental learning.

To achieve incremental learning, the standard way in which
GAs are applied can be revised. With a scenario of new attributes
being acquired, a classifier agent needs some algorithms to re-
vise its rule set to accommodate the new attributes. That means
it should find out how new attributes can be integrated into the
old rule set to generate new solutions. Of course, the agent can
run GAs from scratch again as some conventional approaches
do. However, this approach requires a lot of time and wastes the
previous training effort. In some real-time applications, there
are hard constraints on time and resource; thus, a classifier agent
may need to respond quickly in an online manner. For example,

1083-4419/$20.00 © 2005 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

228 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 2, APRIL 2005

in a robot-based navigation application, the robot needs to adapt
to the new surroundings quickly and prompt actions may be re-
quired based on the new results.

In this paper, we propose an incremental approach to genetic
algorithms, with different initialization schemes (ISs) based on
different initialization of the GA population. We explore the
use of incremental learning by implementing classifier agents
in a multiagent environment, which means the classifier agents
can collaborate to benefit each other. These approaches keep
the old solutions and use an “integration” operation to integrate
them with new elements to accommodate new attributes, while
biased mutation and crossover operations are used to evolve
further a reinforced solution. Four approaches with different
initialization schemes are evaluated with several benchmark
classification problems. The simulation results show that these
approaches can be used successfully for incremental learning.
They may also speed up the learning process and improve
classification rates as compared to the retraining GA. Possible
applications of proposed approaches for continuous incre-
mental training and feature selection are also investigated.

Section II places our work in the context of related work.
Section III discusses incremental learning in a multiagent en-
vironment and presents a model to illustrate the incremental ap-
proach. The basic GA for classification problems and various
initialization schemes are elaborated in Section IV. The simu-
lation results on benchmark databases and their analysis are il-
lustrated in Section V. Discussions on proposed approaches are
elaborated in Section VI. Section VII concludes the paper and
presents future work.

II. RELATED WORK

Many researchers have addressed incremental learning
algorithms and methods. A wealth of work on incremental
learning uses neural networks as learning subjects. Fu et al.
[19] proposed an incremental backpropagation learning net-
work that employs bounded weight modification and structural
adaptation learning rules and applies initial knowledge to
constrain the learning process. Yamauchi et al. [4] proposed
incremental learning methods for retrieving interfered patterns.
In their methods, a neural network learns new patterns with
a relearning of a few number of retrieved past patterns that
interfere with the new patterns. Polikar et al. [20] introduced

, an algorithm for incremental training of neural
networks. Dalché-Buc and Ralaivola [21] presented a new local
strategy to solve incremental learning tasks. It avoids relearning
of all the parameters by selecting a working subset where the
incremental learning is performed. Other incremental learning
algorithms include the growing and pruning of classifier ar-
chitectures [22] and the selection of most informative training
samples [23].

GAs have been widely used in machine learning. DeJong et
al. [7] considered the application of GAs to a symbolic learning
task—supervised concept learning from a set of examples. Cor-
coran et al. [18] used GAs to evolve a set of classification rules
with real-valued attributes. Ishibuchi et al. [9] examined the per-
formance of a fuzzy genetics-based machine learning method
for pattern classification problems with continuous attributes.

Fig. 1. Incremental learning of classifier agents with GA.

Their work only covers batch-mode algorithms, instead of in-
cremental learning cases, while our work explores a method of
using GAs with various initialization schemes in incremental
learning.

There are two general approaches for GA-based rule opti-
mization and learning. The Michigan approach uses GAs to
evolve individual rules, a collection of which comprises the so-
lution for the classification system [24]. Another approach is the
Pitt approach [25], [26], where rule sets in a population compete
against each other with respect to their performance on the do-
main task. The detailed explanation and comparison on these
two approaches can be found in [27]. In this paper, the Pitt ap-
proach is chosen, as the encoding mechanism for this approach
is more straightforward.

Another feature of this paper is that we place incremental
learning in a context of multiagent environment, which means
classifier agents may cooperate with each other to achieve in-
cremental learning. There are two streams of research about
combining multiagent systems and learning. One regards mul-
tiagent systems in which agents learn from the environment in
which they operate. The second stream investigates the issues of
multiagent learning with a focus on the interactions among the
learning agents. Enee and Escazut [28] explored the evolution
of multiagent systems with distributed elitism. It uses classifier
systems as the evolution subjects. Caragea et al. [29] proposed a
theoretical framework for the design of learning algorithms for
knowledge acquisition from multiple distributed, dynamic data
sources.

III. INCREMENTAL LEARNING WITH GAs

In some classification problems, new training data, attributes
and classes may become available or some existing elements
may get changed. Thus, classifier agents should have algo-
rithms to cope with these changes. Either they may sense the
environment and evolve their solutions by themselves, or they
may collaborate to adapt to the new environment, as shown in
Fig. 1. There are many possible types of cooperation among a
group of agents to boost their capability. Classifier agents can

GUAN AND ZHU: AN INCREMENTAL APPROACH TO GA-BASED CLASSIFICATION 229

Fig. 2. ILGA model for a simplified classification problem.

exchange information of new attributes and classes. If avail-
able, they can also exchange evolved rule sets (chromosomes).
They can even provide each other with new training/test data,
or challenge other agents with unsolved problems. Various
combinations of these operational modes are also possible.

Fig. 1 also shows the use of the GA as the main approach
for incremental learning, either with self-learning or collabora-
tive learning. Each classifier agent may have a certain solution
(current solution in the figure) based on the attributes, classes,
and training data currently known. When new attributes, classes,
or data are sensed or acquired from the environment or other
agents, the GA is then used to learn the new changes and evolve
into a reinforced solution. As long as the learning process con-
tinues, this procedure can be repeated for incremental learning.

We postulate that incremental learning with genetic algo-
rithms (ILGA) can improve classification rate and save training
time. The following gives some insight and explanation on the
inner mechanism leading to the advantages of ILGA.

Fig. 2 presents a model for a simplified classification problem
with two attributes and two classes . This sim-
plified model and the following analysis can be easily extended
to higher-dimensional spaces. denotes the possible area con-
fined by the value range of and ,
which is also the maximum searching area for the GA. and

are the areas covering the training instances belonging to the
two class categories respectively. When the normal GA evolves
the rule set using two attributes (and) together, it searches
the area directly. However, ILGA consists of two steps. The
first step is a one-dimensional search along the axis , trying
to find the boundary information for both classes, i.e., ,

, , . The second step inherits these boundary
information, and continue searching the boundary information
for the two attributes (further searching , , ,

). However, with the help of the information inherited, the
second search step can be confined in the areas and (the
shadow area plus the grid area for each as shown in the figure).
It is easy to see that the search space is largely reduced from to

. Despite the overhead of the one-dimensional search in
the first step, ILGA still searches a smaller area than the normal
GA. This explains why ILGA needs less training time. That is,
as ILGA inherits useful information; it stands on a better starting
point.

Fig. 2 also provides some insight on the possibility of im-
provement on the classification rates. As the initial population
for ILGA is created using the boundary information of , they

are located in the area or . Because they are closer to the
best solutions or , it is more likely that ILGA converges
to either solution. However, the normal GA needs to search a
larger area , thus it may miss the best solutions occasionally.
As shown in Fig. 2, it is relatively more difficult for the normal
GA to derive such solution contour. As a result, the partitioning
in the attribute domain brings along some advantages. In gen-
eral, the interference among interfering attributes makes the GA
search more difficult. When a larger attribute domain is parti-
tioned, the interference among attributes can be reduced. There-
fore, it is easier to map partial attributes to classes, which makes
ILGA-based search easier and more accurate.

Furthermore, from Fig. 2, ILGA should stick to the neigh-
borhood for the old attribute , while exploring more for the
boundary information on the new attribute . If the exploration
is more focused on the new attribute, the training time can be
shortened. This motives us to reduce the mutation and crossover
rates. That is, if the point chosen for mutation or crossover is lo-
cated in the old attribute portion, the corresponding rate will be
reduced. The detailed design will be presented in Section IV-E.

The advantages of ILGA and the motivation for reduced rates
can also be explained with the schema analysis and building
block hypothesis [16], [30]. A schema is a similarity template
describing a subset of strings with similarities at certain string
positions. It is postulated that an individual’s high fitness is due
to the fact that it contains good schemata. Short and high-per-
formance schemata are combined to form building blocks with
higher performance expected. Building blocks are propagated
from generation to generation, which leads to a keystone of the
GA approach. Research on the GA has proved that it is bene-
ficial to preserve building blocks during the evolution process
[30]. ILGA inherits the old chromosomes from the previous re-
sults, where the building blocks likely reside. The integration
of these building blocks into the initial population provides a
solid foundation for the following evolutions. Also, the smooth
preservation of these building blocks during the following evo-
lutions also boosts the classification performance. This justifies
the use of the reduced rates. When the crossover and mutation
rates are reduced in the old elements portion, the building blocks
inside will undergo less genetic evolution pressure and thus in-
crease their survival chance.

IV. DESIGN OF INCREMENTAL LEARNING WITH GAS

Our approaches are developed on the basis of standard GAs.
The design of GAs for rule-based classification is presented first,
then different initialization schemes for incremental learning are
elaborated. A typical GA is shown in Fig. 3. The genetic oper-
ators including mutation, crossover, and selection are presented
in Appendix I, which provides a detailed explanation of muta-
tionRate, crossoverRate, and survivorPercent.

The task of classification is to assign instances to one out
of a set of predefined classes, by discovering certain relation-
ship among attributes. Let us assume our pattern classification
problem is a -class problem in an -dimensional pattern space.
And real vectors , ,
are given as training patterns from the classes . Nor-
mally, a learning algorithm is applied to a set of training data

230 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 2, APRIL 2005

Fig. 3. Pseudocode of a typical GA.

with known classes to discover the relationship between the at-
tributes and classes. The discovered rules can be evaluated by
classification accuracy or error rate either on the training data
or test data.

For classification problems, the discovered rules are usually
represented in the following IF-THEN form:

(1)

Each rule has one or more conditions as the antecedent, and an
action statement as the consequent which determines the class
category. There are various representation methods for the con-
ditions and actions in terms of the rule properties (fuzzy or non-
fuzzy) and the attribute properties (nominal or continuous). In
this paper, we use nonfuzzy IF-THEN rules. A rule set which
consists of a certain number of rules is supposed to be a solu-
tion for a classification problem.

A. Encoding Mechanism

In our approach, an IF-THEN rule is represented as follows:

(2)

where is a rule label, is the number of attributes,
is the attribute set, and is a class.

and are the minimum and maximum bounds of the th
attribute respectively. We encode rule according to the
equation shown at the bottom of the page, where denotes
whether the condition is active or inactive, which is encoded
as 1 or 0. If is larger than at any time, this element
will be regarded as an invalid element.

Each antecedent element represents an attribute, and each
consequence element stands for a class. Each chromosome

consists of a set of classification rules by
concatenation

(3)

where is the maximum number of rules allowed for each chro-
mosome and is the size of the population. Therefore, one chro-
mosome will represent one rule set. Assume we know the value
range for each attribute and class a priori, , , and

can be encoded each with a character by finding their posi-
tions in the ranges. Thus, the final chromosome can be encoded
as a string consisting of characters. According to the above en-
coding mechanism, each chromosome will consist of charac-
ters, where

(4)

If all the antecedent elements in a rule are inactive, this rule
will be regarded as a noncontributing rule. With this mechanism,
our approach has the feature of variable-length GAs so that the
number of active rules in a rule set can be flexible. This en-
coding mechanism is suitable for classification problems whose
attributes are real valued. However, it can be easily extended to
classification problems with nominal-valued attributes.

B. Fitness Function

The fitness of a chromosome reflects the success rate
achieved while the corresponding rule set is used for clas-
sification. The GA operators use this information to evolve
better chromosomes over generations. As each chromosome in
our approach comprises an entire rule set, the fitness function
actually measures the collective behavior of the rule set. The
fitness function simply measures the percentage of instances
that can be correctly classified by the chromosome’s rule set.

Since there is more than one rule in a chromosome, it is pos-
sible that multiple rules match the conditions for all attributes
but predict different classes. We use a voting mechanism to re-
solve conflict. That is, each rule casts a vote for the class pre-
dicted by itself, and finally the class with the highest votes is
regarded as the conclusive result. If any classes tie on one in-
stance, it is then concluded that this instance cannot be classi-
fied correctly by this rule set. (Our observation is that this case
rarely happens, therefore it will not hurt the accuracy perfor-
mance much.) Fig. 4 shows the pseudocode for fitness evalua-
tion.

C. Stopping Criteria

There are four factors in the stopping criteria. The evolution
process stops after a generation limit, or when the best fitness
of chromosome reaches a preset threshold (which is set as 1.0
through this paper), or when the best fitness of chromosome has

GUAN AND ZHU: AN INCREMENTAL APPROACH TO GA-BASED CLASSIFICATION 231

Fig. 4. Pseudocode for evaluating the fitness of one chromosome.

Fig. 5. Incremental approach to the GA with initialization schemes.

no improvement over a specified number of generations—stag-
nation limit, or the current performance on the validation data
has degraded for 10% compared to the average performance of
the previous 20generations, if the validation data are used. The
detailed settings are reported along with the corresponding re-
sults.

D. Initial Population With Different ISs

Fig. 5 shows the pseudocode of our incremental approach to
the GA with initialization schemes. The main features lie in the
formation of the initial population, integration of old and new
chromosomes, the biased genetic operators, and incremental
evolution of new attributes. Group chromosomes in the figure
refer to the chromosomes preserved in classifier agents as the
result from the last round of evolution.

The formation of initial population is one of the main fea-
tures of our approaches, in which the integration of old and new
chromosomes/elements is the major contribution. Fig. 6 shows
how the new elements are inserted into an old rule to form a new
rule. Note that it only shows the operation on a single rule for
the purpose of simplicity. The other rules in the chromosome
will undergo similar operations.

There are several ways to construct new chromosome popu-
lation in terms of the selection of old chromosome(s) and newly
appended elements. For the old chromosome(s), we can either
use the best rule set (chromosome) as a seed for all the initial
population or the whole population of chromosomes in the cur-
rent solution if available. To create new elements, we have two
choices. We can append randomly created new elements to the
old rule sets, if the new information acquired or exchanged from
the other classifier agent only includes the new attributes and

Fig. 6. Formation of a new rule in a chromosome.

(a)

(b)

Fig. 7. (a) Illustration for integrating old chromosomes with new elements
under IS2. (b) Pseudocode for integrating old chromosomes with new elements
under IS2.

their value ranges. If the other classifier agent can provide more
information such as the entire evolved rule set covering the new
attributes, it will be more helpful to use the elements from such
a rule set. We list these choices in Table I, and give them distinct
names for comparison later (IS in the table stands for initializa-
tion schemes). Actually, there are many options for the integra-
tion of old and new elements. For example, the elements from
the acquired rules can also be available as the best chromosome
or group chromosomes. Further discussion on this is covered in
Section VI.

Fig. 7(a) illustrates the formation of a new population using
IS2 and Fig. 7(b) shows the corresponding pseudocode of how
the new chromosomes are created by integrating the old and
new elements under IS2. We can see that IS2 copies from the
current solution the best chromosome into all the new chromo-
somes, and new elements are selected with a matching mecha-
nism from the incoming chromosomes from the other agent. The
pseudocodes for IS1, IS3, and IS4 are listed in Appendix II.

These four alternatives are applicable to different environ-
ments for incremental learning. If incremental learning happens
in a stand-alone agent, this agent can only use IS1 and IS3. How-
ever, in a collaborative multiagent environment, classifier agents
gain more freedom on choosing which approach to use. They

232 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 2, APRIL 2005

TABLE I
ALTERNATIVES ON THE FORMATION OF A NEW POPULATION

Fig. 8. Biased crossover and mutation rates.

may choose one of the four approaches according to the envi-
ronmental situation. We will have a detailed discussion on this
later based on the experiment results.

E. Biased Mutation and Crossover

In our approaches, we have chosen to bias the mutation and
crossover operators with some preference toward the new el-
ements. Mutation and crossover points are still selected ran-
domly. However, if the point chosen for mutation or crossover is
located in the old elements part, the corresponding rates may be
reduced with a reduction rate, as shown in Fig. 8. The mutation
and crossover reduction rates are called and , respectively.

The motivation behind this is that we tend to preserve the
structure of old elements and explore more on the combination
between old and new elements. The old elements part still needs
variation, but the rates applied can be comparatively lower, com-
pared with the rates exerted on the new elements. Classifier
agents can adjust the values for and for different classifica-
tion problems to achieve better solutions. We have more experi-
ments and discussions on the setting of and in Section V-B.

V. EXPERIMENTAL RESULTS AND POSSIBLE APPLICATIONS

A. Experiment Scheme

Ten benchmark data sets have been used for experiments in
this paper. The information of these data sets is provided in
Table II, which includes the number of instance, attributes, and
classes in each data set. The first nine sets are taken from the UCI
machine learning repository [31], and the last one is taken from

TABLE II
DATASETS USED FOR THE EXPERIMENTS

the PROBEN1 collection [32]. They all are real-world prob-
lems.

All experiments were completed on Pentium III 650-MHz
PCs. The mean values reported were averaged over ten inde-
pendent runs. Standard deviation (SD) is reported in braces. The
-test is used to evaluate the significance of difference between

two means, and -value, -value, and degree of freedom (df) are
reported for a certain claim. is used as the threshold
for significance of difference, i.e., the difference is significant
with at least 95% confidence level, if its -value with -test is
less than 0.05.

B. Results and Analysis

In this section, we evaluate the performance of ILGA. The
data sets used in this section were partitioned into four parts,
namely, TRA, TRB, VAL, and TST, each with 25% of instances.
TRA and TRB are used as training data, VAL is used as vali-
dation data, and TST is used as unknown test data. Therefore,
when the classifier knows only some partial attributes, it uses
TRA, VAL, and TST with those partial attributes. When it learns
the full set of attributes, TRA TRB with the complete at-
tributes are then used as training data, VAL and TST with the
complete attributes are used as validation and test data.

Fig. 9(a) shows the evolution of the best rule set with the first
ten attributes in the wine data set. The figure records the best
CR in each generation, i.e., the highest fitness value achieved for
each generation. It is shown that CR grows from an initial value
of 0.44 gradually, and finally reaches 0.95 at generation 140.
Fig. 9(b) shows the succeeding GA process with 13 attributes.
IS2 is chosen for the formation of the initial population, which
uses the best chromosome in the resultant rule set from (a), and
combining it with the rule elements from the other agent. The
retraining GA, which trains the classifier from scratch (i.e., with

GUAN AND ZHU: AN INCREMENTAL APPROACH TO GA-BASED CLASSIFICATION 233

Fig. 9. Simulation results show: (a) classifier agent evolving rule sets with ten
attributes and (b) GA with IS2 running to achieve rule sets with 13 attributes,
compared to the retraining GA approach.

random initialization) again with 13 attributes, is also shown in
the figure for comparison.

We can note from the figure that the best CR from the GA with
IS2 decreases from 0.95 to 0.87 immediately after the formation
of initial population. This can be explained by the facts that
new attributes are integrated into the new chromosomes and the
new training data are used. Then, CR increases gradually, and
reaches 0.99 with 100 generations. In the case of retraining GA,
it costs about 180 generations to reach a CR of 0.98. As a result,
we find that the GA with IS2 has integrated successfully the
new attributes, and evolves a new rule set within shorter time
compared to the retraining GA.

Table III compares performance between the four IS ap-
proaches and the retraining GA using the wine data. The GA
was run initially with a partial number of attributes first (nine
and ten attributes as shown in the table). NOA and NNA rep-
resent a different combination of the number of old and new
attributes. The attributes were used in the same order as in the
original data set. For instance, means the first ten
attributes were used as old attributes, and means the
remaining three attributes were used as new attributes. With
the results of the GA, four IS approaches and the retraining
GA were conducted. Therefore these approaches have the same
starting point, which is fair for comparison.

We find that all four IS approaches perform well in inte-
grating various numbers of attributes. For example, in the case
of , , the initial run of GA achieves an
ending CR of 0.9477 and a test CR with 0.6511. IS4 gets an ini-
tial CR of 0.8011. Then with about 70 generations, it reaches an
ending CR of 0.9864 and a test CR of 0.8222. This means that
IS4 recovers the information loss caused by missing attributes,
and obtains new capability to use the information from the ex-
panded attributes.

With a comparison among the four IS approaches and the
retraining GA, it is found that all the four IS approaches cost
fewer generations (shorter training time) than the retraining GA,
which demonstrates the advantages of GAs with specialized ini-
tialization schemes. -tests on training time show the signifi-

TABLE III
COMPARISON OF THE PERFORMANCE OF THE GA WITH DIFFERENT

IS APPROACHES ON THE WINE DATA

cance of these advantages, e.g., , , ,
for IS4 versus the retraining GA in ; ,

, , for IS2 versus the retraining GA in ;
, , , for IS4 versus the retraining GA

in ; , , , for IS2 versus the
retraining GA in .

It is found from Table III that the mean of test CRs of the
four IS approaches are larger than that of the retraining GA.
We also find the standard deviations of test CR become larger,
compared to the training CR. This is reasonable as the test data
are totally unknown to the classifier agents during the training
process. As a result, some -tests on the test CR shows that the
difference between the IS approaches and the retraining GA is
not significant. For example, , , for IS2
versus the retraining GA in . But a few -tests still
show the significance of difference. For instance, IS4 achieves
better test CR than the retraining GA (, ,

, for ; , , , for
).

Table III also shows the comparison among the four IS ap-
proaches (as listed in Table I). The results show that IS2 and IS4
cost fewer generations and thus less training time to reach con-
vergence than IS1 and IS3. For instance, IS4 uses less training
time than IS1 (, , , for ;

, , for). This may be ex-
plained by recalling the method each approach uses to form the
initial population. As IS2 and IS4 use the entire evolved rule set
from the other agent, they can acquire more useful information
from the rule set than IS1 and IS3 with the randomly created el-
ements. This can also be verified by observing the initial CR for

234 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 2, APRIL 2005

TABLE IV
COMPARISON OF THE PERFORMANCE OF THE GA WITH DIFFERENT

IS APPROACHES ON THE CANCER DATA

the IS approaches, i.e., the initial CRs of IS2 and IS4 are higher
than those of IS1 and IS3.

Table IV compares the performance of various IS approaches
on another data set—the cancer data. We still get similar find-
ings as those obtained from Table III. We find that the four
IS approaches meet the requirements of incremental learning
with different performance. The comparison between the IS ap-
proaches and retraining GA also shows similar findings as ob-
served from the wine data. For instance, IS4 outperforms the re-
training GA in training time (, , , for

; , , , for), and
IS2 outperforms the retraining GA in training time (,

, , for ; , ,
, for). IS2 and IS4 again need fewer gener-

ations (less training time) to reach convergence. For instance,
IS2 uses less training time than IS1 (, ,

, for ; , , , for
). -tests on the test CRs also reported different sig-

nificance levels on the performance difference between the IS
approaches and the retraining GA. For instance, the advantage
of IS4 over the retraining GA is significant (, ,

, for), while the advantage of IS2 over the
retraining GA is not significant (, , ,
for). We find the advantages of IS approaches here
are mainly reduced training time.

Finally, we conducted several experiments with different set-
tings of the mutation and crossover reduction rates and
to explore their effects on the performance of various IS ap-
proaches. When one rate is evaluated, another rate is fixed as 1.0.
Figs. 10 and 11 show the results on the wine data with different
values of and respectively. or means there is
no operation (mutation or crossover) on the old elements, and

or means there is no bias on mutation or crossover
between the old elements and new elements. We find that and

really affect the performance of IS approaches. Both figures
show that if IS approaches are used with or , they

Fig. 10. Effect of mutation reduction rate � on the performance of IS
approaches (test CR and training time) with the wine data.

need the longest training time and achieve lower test CRs com-
pared to other values for and . This tells us that the extremely
biased rates (or) are not suitable for IS approaches
and the old elements still need some genetic operations. It is
also shown in both figures that and training time decreases in
a general trend, when the values of and increase. But the
improvement on the test CR is very small and can be neglected.
The best values for and are between 0.6 to 0.8, depending
on the type of IS approaches used. This result supports the use
of reduced crossover and mutation rates on the old elements.

Recalling the analysis in Section III based on Fig. 2, we have
explained the motivation and necessity of two reduction rates,
i.e., and . Meanwhile, as the real classification
problems are more complicated than the simplified one, the ex-
ploration on the boundary information of the old attribute should
not be stopped entirely. This implies and . Thus, we
have and , and the optimal values for the
reduction rates exist in between. The above experiment results
have confirmed this analysis. With the selection of and , the
generation cost to achieve the stopping criteria can be reduced,
thus the training time will be saved accordingly.

We have evaluated the performance of ILGA with other six
data sets. Due to the limited space, we just compare the perfor-
mance between IS4 and retraining GA, and only one attribute

GUAN AND ZHU: AN INCREMENTAL APPROACH TO GA-BASED CLASSIFICATION 235

Fig. 11. Effect of crossover reduction rate � on the performance of IS
approaches (test CR and training time) with the wine data.

partition is tried for each data set. (If the total number of at-
tributes is an even number , half attributes are simulated as
old attributes, and the other half as new attributes; if it is an odd
number , then attributes are used as old attributes,
while the rest as new ones.) The experimental results are shown
in Table V, which confirm again the above findings. That is, IS4
outperforms the retraining GA in training and test CRs, and it
also costs less training time with most data sets. The improve-
ment on the classification performance is larger for some data
sets such as the vehicle and the image segmentation.

C. Further Applications of Incremental Learning With the GA

The above experiments have shown that the incremental
learning with GAs is feasible with the specially-designed
algorithms. Four different approaches have been proposed
and compared. In this section, we explore further applications
in two aspects, namely, continuous incremental training and
feature selection.

In the earlier experiments, it is assumed that only one set of
new attributes is introduced, and they are treated as a batch.
Actually these algorithms can be extended to run in the con-
tinuous mode, which means new attributes can be introduced
one after another. The resulting classification rule sets are also
evolved incrementally to accommodate the new attributes. The

TABLE V
ILGA RESULTS ON SOME DATA SETS

new approaches are termed as continuous incremental genetic
algorithms (CIGAs). With the incorporation of the four IS ap-
proaches respectively, four approaches of CIGAs from CIGA1
to CIGA4 are available.

Fig. 12 compares the performance of four types of CIGAs on
the glass data in terms of training CR and test CR respectively.
It is shown that all types of CIGAs outperform the normal GA in
both CRs. Among the four types, CIGA4 is the best approach,
and CIGA1 and CIGA3 are inferior to CIGA2 and CIGA4 in
both CRs. The simulation results showed that CIGAs can be
used successfully for continuous incremental training of classi-
fier agents and can achieve better performance than the normal
GA using batch-mode training.

In the experiments mentioned, the whole attribute set is di-
vided into old and new parts. However, the sequence of at-
tributes is kept unchanged as in the original data sets. In fact,
the sequence of the attributes does affect the final performance.
We have conducted thorough investigation on the impact of at-
tribute ordering in [33]. In the new approach, called ordered
incremental genetic algorithm (OIGA), attributes are arranged
in different orders by evaluating their individual discriminating
ability. With experiments on different attribute ordering such as
descending-order, ascending-order, original-order, and random-
order, it was found that attribute ordering does have some effect
on the performance and the descending-order sequence achieves
the best performance. The experiments on benchmark classi-
fication problems also showed that ordering will not make a
problem deceptive and will not lead to over-fitting or over-gen-
eral solutions.

The results of incremental learning also hint that the perfor-
mance of classifier agents may vary when running with par-
tial attributes, which motivates us to explore the application of

236 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 2, APRIL 2005

Fig. 12. Performance comparison of CIGAs on the glass data.

incremental learning for feature selection. Table VI shows the
performance of the GA with some partial attributes on the dia-
betes data. As shown in the table, each time only one attribute is
dropped. The objective is to identify which attribute is more im-
portant, and the ranking of attributes can be obtained according
to the ending CR achieved. For example, we note that if attribute
2 is excluded, the ending CR from using the other seven at-
tributes is only 0.7151, which is apparently lower than the other
cases. Therefore, attribute 2 is regarded as the most important at-
tribute. The importance of other attributes is determined accord-
ingly and ranked. The importance of attributes in descending
order is 2-3-7-6-8-4-5-1. This is a simple way to find relevant
features and discarding irrelevant features.

VI. DISCUSSIONS

As mentioned in Section II, there are two general approaches
for the GA-based rule optimization and learning, namely,
Michigan approach and Pitt approach. Our design mainly fol-
lows the Pitt approach, although some revisions are adopted to
address the special needs of incremental learning. For instance,
the addition of new attributes into chromosomes makes the
length of chromosomes variable through evolution. While
carrying out our work based on the Pitt approach, we have
also made some exploration on ILGA based on the Michigan
approach [34]. It has been found that ILGA based on the
Michigan approach is feasible and the results were comparable
(to ILGA based on the Pitts approach). The results from similar
experiments on some real-world data sets showed again that

TABLE VI
COMPARISON OF THE PERFORMANCE OF THE GA WITH SOME PARTIAL

ATTRIBUTES ON THE DIABETES DATA

incremental learning based on the Michigan approach achieves
better performance than the retraining GA.

The main advantage of the ILGA is the initialization process,
during which the obtained rule sets with a subset of attributes
are effectively used when a population is initialized with the full
set of attributes. The specially-designed algorithms can cater to
the different initialization situations. The experimental results
have shown the performance improvement advantages on the
training time and classification rates. However, ILGA may be
not applicable in certain situations, for example, some closely
linked attributes cannot be separated into independent portions,
or the nature of problem is totally changed in a dynamic envi-
ronment, then the normal GA may still be a good choice.

The order of attributes, i.e., linkage of attributes, is another
important issue. Holland [16] indicated that crossover induces
a linkage phenomenon. It has been shown that GAs work well
only if the building blocks are tightly linked on the chromo-
some [30]. Some algorithms have been proposed to include
linkage design into problem representation and recombination
operator or use some probabilistic-based models. For example,
the linkage learning genetic algorithm (LLGA) was proposed
in [35] for tackling the linkage and ordering problem. Several
Probabilistic Model Building Genetic Algorithms (PMBGAs)
have been proposed [36] to generate new child population
based on probabilistic models. The dependence and linkage
among the attributes in this paper also indicates possible
presence of the linkage learning problem, especially when the
one-point crossover operator is used. However, the proposed
ILGA may alleviate linkage pressure by dividing the whole
attribute domain into several parts. To find the best linkage
among attributes will be a future research issue for ILGA.

There can be many variations for the algorithms and exper-
iment settings to deal with different environmental situations.
We discuss further some possibilities which include the expan-
sion of population size to facilitate the integration of new and
old elements, the algorithms for a single agent to accommodate
the new attributes, and the special case when the new patterns
are available with new attributes only.

As discussed earlier, before IS2 and IS4 are employed, the
old and new elements have already been evolved. When they
are integrated, there are many options in producing the offspring

GUAN AND ZHU: AN INCREMENTAL APPROACH TO GA-BASED CLASSIFICATION 237

by integration. In the current experiments, we choose the same
population size for initial GAs and succeeding GAs with dif-
ferent initialization schemes. In order to explore more on in-
tegration, we double the population size to accommodate more
resulting offspring chromosomes from the integration of old and
new elements. Then the offspring chromosomes are sorted in a
descending order of fitness. The fitter half will survive as the ini-
tial population for IS2 or IS4. The other half will be discarded.
We have done some experiments with this refinement, and found
the resulting test CR can be improved in most cases. For in-
stance, the test CR for wine data can be improved by about 2%.
As for the training time, it will be a little longer because of the
longer integration process. However, it can be neglected as the
following training time will dominate the whole GA process.

From the results of IS1–IS4, we find that IS2 and IS4 per-
form better than IS1 and IS3, mainly in reduced training time.
We have considered the application of IS approaches in a mul-
tiagent environment, which means IS2 and IS4 are used only
when two or more classifier agents are exchanging information
on new attributes and instances. However, IS2 and IS4 can also
be used in the situation of one single agent. When such an agent
learns that new attributes are available, it can create the elements
for these attributes first, then independently evolve these ele-
ments, as if it was done in other agents. Finally, these elements
can be integrated with the old ones using IS2 or IS4. Therefore,
the GAs with various initialization schemes can be refined for
a single agent to achieve better performance by replacing the
process of randomly creating new element with a separate evo-
lution process for new elements before they are integrated.

In the above experiments, we assumed that the new training
patterns including all attributes come along with the new at-
tributes so that we can use these patterns to train the rule set with
all attributes. This is likely in most realistic applications. For in-
stance, a researcher may find a new symptom which is likely to
contribute to the diagnosis of a certain disease. Then, new data
associated with the old and new symptoms may be collected
for further research. However, sometimes newly-collected data
may only contain information on the new attributes, without in-
formation on the old attributes. Therefore, when the old and new
attributes are integrated, there is no hands-on training patterns
to train the rule set for the whole set of attributes. We will need
to integrate the old and new training patterns together to form a
new training pattern set according to the class categories. Then,
classifier agents can use ILGA with different IS approaches to
evolve a new rule set on the new training patterns.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an incremental approach to
the GA, with different initialization schemes for incremental
learning in classifier agents. These approaches do not need
to re-evolve the rule set from scratch in order to adapt to the
ever-changing environment. Using these approaches, a clas-
sifier agent can fully utilize existing knowledge and quickly
respond to changes in the environment.

The main features such as the incremental evolution of new
attributes, formation of new population, integration of chromo-
somes, and biased rates for genetic operators were elaborated.

Real-world data sets were used to evaluate the performance of
the incremental approach. The experimental results showed that
GAs with IS approaches can be successfully used for incre-
mental learning and may generally speed up the learning process
and improve classification rates as compared to the retraining
GA. Possible applications for continuous incremental training
and feature selection were also presented.

In our experiments, we assumed that the incoming attributes
are relevant to the old attributes. In a real-world situation, classi-
fier agents may need the ability to identify whether the incoming
new attributes data are consistent with the old attributes by ob-
serving the trend of training or test performance. When agents
exchange attributes, classes, or training data, some overlapping
can happen. For example, the training data in different agents
may be identical or nonidentical, thus the exchanged training
data may have different degrees of overlap. Therefore, a classi-
fier agent needs to analyze the incoming data, and integrate them
with its own current data using certain methods. Furthermore,
if elements/rules exchanged among agents have some overlap-
ping, agents may need more advanced mechanisms to detect
them and integrate them properly.

In our experiments, we set the maximum number of rules em-
pirically. Actually, agents can increase the rule number gradu-
ally until they find there is no improvement on the classification
rate. However, in this way, training time may become unaccept-
able. It can be turned into a multiobjective problem, as we want
to balance among rule number, classification rate, and training
time.

APPENDIX I
GENETIC OPERATORS

We use one-point crossover in all experiments. Referring to
the encoding mechanism, we can note that crossover will not
lead to inconsistency and thus can take place in any point of
chromosome. On the contrary, the mutation operator has some
constraints. The mutation point is randomly selected. According
to the position of selected point, we can determine whether it is
an activeness, minimum, or maximum element. Different muta-
tion is available for each. For example, if an activeness element
is selected for mutation, it will just be toggled. Otherwise when
a boundary-value element is selected, the algorithm will ran-
domly select a substitute in the range of that attribute. This is
implemented in such a way that the lower and upper bounds are
never exceeded. The mutation and crossover rates are selected as
0.01 and 1.0 respectively (mutationRate and crossover-
Rate). For reproduction, we simply set the survival rate
(or generation gap) as 50% (SurvivorsPercent), which
means half of the parent chromosomes with higher fitness will
survive into the new generation, while the other half will be re-
placed by the newly created children resulting from crossover
and/or mutation.

Selection mechanism deals with the selection of a population
which will undergo genetic operations. Roulette wheel selection
[37] is used in this paper. In this investigation, the probability
that a chromosome will be selected for integration is given by
the chromosome’s fitness divided by the total fitness of all the

238 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 2, APRIL 2005

IS1 :

forforfor each newChrom[j] in the new population

fbestChrom := the best chromosome from the current solution;

bufferChrom := bestChrom;

forforfor each rule i in bufferChrom

frandomly create the activeness bit and bounds for each new attribute;

create each element with the activeness bit and boundary values;

insert all the created elements into bufferChrom;

g

newChrom[j] := bufferChrom;

g

IS3 :

forforfor each newChrom[j] in the new population

fbufferChrom := the chromosome[j] from the current solution;

forforfor each rule i in bufferChrom

frandomly create the activeness bit and bounds for each new attribute;

create each element with the activeness bit and boundary values;

insert all the created elements into bufferChrom;

g

newChrom[j] := bufferChrom;

g

IS4 :

forforfor each newChrom[j] in the new population

fbufferChrom := the chromosome[j] from the current solution;

incomingChrom := a chromosome randomly selected from the group

chromosomes coming from another agent;

forforfor each rule i in bufferChrom

fcurClass := the class of rule i;

analyze incomingChrom; and place all new incoming rules having

the same class as curClass into a candidate pool;

randomly choose a rule from the candidate pool;

insert all the elements for the new attributes in the selected rule

into bufferChrom;

g

newChrom[j] := bufferChrom;

g

chromosomes. This means, during selection, higher fitness chro-
mosomes have a higher probability of producing offspring for
the next generation than lower fitness chromosomes.

APPENDIX II
PSEUDOCODE FOR THE FORMATION OF A NEW POPULATION

USING IS1, IS3, AND IS4

See the table at the top of the page.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
the constructive comments. The second author is grateful to the
Singapore Millennium Foundation for the fellowship awarded.

REFERENCES

[1] C. Giraud-Carrier, “A note on the utility of incremental learning,” AI
Commun., vol. 13, no. 4, pp. 215–223, 2000.

[2] J. M. Bradshaw, Software Agent. Cambridge, MA: MIT Press, 1997.
[3] S. M. Weiss and C. A. Kulikowski, Computer Systems that Learn: Clas-

sification and Prediction Methods from Statistics, Neural Nets, Machine
Learning, and Expert Systems. San Mateo, CA: Morgan Kaufmann,
1991.

[4] K. Yamauchi, N. Yamaguchi, and N. Ishii, “Incremental learning
methods with retrieving of interfered patterns,” IEEE Trans. Neural
Netw., vol. 10, no. 6, pp. 1351–1365, Nov. 1999.

[5] S. U. Guan and S. Li, “Incremental learning with respect to new
incoming input attributes,” Neural Process. Lett., vol. 14, no. 3, pp.
241–260, 2001.

[6] L. Su, S. U. Guan, and Y. C. Yeo, “Incremental self-growing neural net-
works with the changing environment,” J. Intell. Syst., vol. 11, no. 1, pp.
43–74, 2001.

[7] K. A. DeJong and W. M. Spears, “Learning concept classification rules
using genetic algorithms,” in Proc. 1991 Int. Joint Conf. Artificial Intel-
ligence, 1991, pp. 651–656.

GUAN AND ZHU: AN INCREMENTAL APPROACH TO GA-BASED CLASSIFICATION 239

[8] J. J. Merelo, A. Prieto, and F. Moran, “Optimization of classifiers using
genetic algorithms,” in Advances in the Evolutionary Synthesis of Intel-
ligent Agents, M. Patel, V. Honavar, and K. Balakrishnan, Eds. Cam-
bridge, MA: MIT Press, 2001.

[9] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation
of fuzzy classifier systems for multidimensional pattern classification
problems,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 29, no. 5,
pp. 601–618, Oct. 1999.

[10] H. Ishibuchi and T. Nakashima, “Improving the performance of fuzzy
classifier systems for pattern classification problems with continuous at-
tributes,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1057–1068, Dec.
1999.

[11] H. Kang, “Evolvable cellular classifiers,” in Proc. Congr. Evolutionary
Computation, 2000, pp. 464–470.

[12] M. Setnes and H. Roubos, “GA-Fuzzy modeling and classification:
Complexity and performance,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5,
pp. 509–522, Oct. 2000.

[13] D. B. Fogel, L. J. Fogel, and J. W. Atmar, “Meta-evolutionary program-
ming,” in Proc. 25th Aslimar Conf. Signals, Systems and Computers,
1991, pp. 540–545.

[14] J. R. Koza, Genetic Programming. Cambridge, MA: MIT Press, 1992.
[15] H. P. Schwefel and G. Rudolph, “Contemporary evolution strategies,” in

Proc. 3rd Int. Conf. Artificial Life, vol. LNAI 929, 1995, pp. 893–907.
[16] J. H. Holland, Adaptation in Nature and Artificial Systems. Ann Arbor,

MI: Univ. Michigan Press, 1975.
[17] P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Learning Classifier Sys-

tems: From Foundations to Applications. Berlin, Germany: Springer,
2000.

[18] A. L. Corcoran and S. Sen, “Using real-valued genetic algorithm to
evolve rule sets for classification,” in Proc. 1st IEEE Conf. Evolutionary
Computation, Orlando, FL, Jun. 1994, pp. 120–124.

[19] L. Fu, H. Hsu, and J. C. Principe, “Incremental backpropagation learning
networks,” IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 757–761, May
1996.

[20] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: An incre-
mental learning algorithm for supervised neural networks,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., pt. C, vol. 31, no. 4, pp. 497–508,
Nov. 2001.

[21] F. Dalché-Buc and L. Ralaivola, “Incremental learning algorithms for
classification and regression: Local strategies,” in Proc. American Insti-
tute of Physics Conf., vol. 627, 2001, pp. 320–329.

[22] F. S. Osorio and B. Amy, “INSS: A hybrid system for constructive ma-
chine learning,” Neurocomputation, vol. 28, pp. 191–205, 1999.

[23] A. P. Engelbrecht and R. Brits, “A clustering approach to incremental
learning for feedforward neural networks,” in Proc. Int. Joint Conf.
Neural Network, vol. 3, 2001, pp. 2019–2024.

[24] J. H. Holland, “Escaping brittleness: The possibilities of general pur-
pose learning algorithms applied to parallel rule-based systems,” in Ma-
chine Learning: An Artificial Intelligence Approach, R. S. Michalski, J.
G. Carbonell, and T. M. Mitchell, Eds. Los Altos, CA: Morgan Kauf-
mann, 1986.

[25] K. A. DeJong, “Learning with genetic algorithms: An overview,” Mach.
Learn., vol. 3, pp. 121–138, 1988.

[26] S. F. Smith, “A Learning System Based on Genetic Adaptive Algo-
rithms,” Ph.D. dissertation, Univ. Pittsburgh, Pittsburgh, PA, 1980.

[27] E. Bernado, X. Llora, and J. M. Garrell, “XCS and GALE: A com-
parative study of two learning classifier systems on data mining,” in
Int. Workshop Learning Classifier Systems, vol. LNAI 2321, 2002, pp.
115–132.

[28] G. Enee and C. Escazut, “Classifier systems evolving multi-agent system
with distributed elitism,” in Proc. 1999 Congr. Evolutionary Computa-
tion, 1999, pp. 1740–1746.

[29] D. Caragea, A. Silvescu, and V. Honavar, “Toward a theoretical frame-
work for analysis and synthesis of distributed and incremental learning
agents,” in Proc. Workshop on Distributed and Parallel Knowledge Dis-
covery, Boston, MA, 2000.

[30] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[31] C. L. Blake and C. J. Merz. (1998) UCI Repository of Machine
Learning Databases. Dept. Inform. and Comput. Sci., Univ. California,
Irvine. [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepos-
itory.html

[32] L. Prechelt, “PROBEN1: A set of Neural Network Benchmark Problems
and Benchmarking Rules,” Dept. Informatics, Univ. Karlsruhe, Karl-
sruhe, Germany, Tech. Rep. 21/94, 1994.

[33] F. Zhu and S. U. Guan, “Ordered incremental training with genetic al-
gorithms,” Int. J. Intell. Syst., vol. 19, no. 12, pp. 1239–1256, 2004.

[34] C. Y. Cheah, “Incremental Genetic Algorithm With the Real Michigan-
Style Classifier,” B.Eng. thesis, National Univ. Singapore, 2004.

[35] G. R. Harik and D. E. Goldberg, “Learning linkage through probabilistic
expression,” in Comput. Methods in Appl. Mechan. and Eng., 2000, vol.
186, pp. 295–310.

[36] M. Pelikan, D. E. Goldberg, and E. Cantú-paz, “Linkage problem, distri-
bution estimation and bayesian networks,” Evolut. Comput., vol. 8, no.
3, pp. 311–340, 2000.

[37] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 3rd ed. New York: Springer-Verlag, 1996.

Sheng-Uei Guan received the M.Sc. and Ph.D. de-
grees from the University of North Carolina, Chapel
Hill.

He is currently with the Electrical and Computer
Engineering Department, National University of
Singapore. He previously worked in a prestigious
R&D organization for several years, serving as a
Design Engineer, Project Leader, and Manager. He
has served as a member of the R.O.C. Informa-
tion and Communication National Standard Draft
Committee. After leaving the industry, he joined

Yuan-Ze University, Taiwan, R.O.C., for over three years, where he served as
Deputy Director for the Computing Center, and also as the Chairman for the
Department of Information and Communication Technology. Later, he joined
the Department of Computer Science and Computer Engineering, La Trobe
University, Melbourne, Australia, where he helped to create a new multimedia
systems stream.

Fangming Zhu received the Ph.D. degree from the
National University of Singapore in 2004, and the
B.Eng. and M.Eng. degrees from the Shanghai Jiao-
tong University, Shanghai, China, in 1994 and 1997,
respectively.

He is currently a Singapore Millennium Foun-
dation Postdoctoral Fellow in the Department of
Electrical and Computer Engineering, National
University of Singapore. His current research in-
terests include evolutionary computation, pattern
classification, and intelligent agents.

	toc
	An Incremental Approach to Genetic-Algorithms-Based Classificati
	Sheng-Uei Guan and Fangming Zhu
	I. I NTRODUCTION
	II. R ELATED W ORK

	Fig.€1. Incremental learning of classifier agents with GA.
	III. I NCREMENTAL L EARNING W ITH GAs

	Fig.€2. ILGA model for a simplified classification problem.
	IV. D ESIGN OF I NCREMENTAL L EARNING W ITH GA S

	Fig.€3. Pseudocode of a typical GA.
	A. Encoding Mechanism
	B. Fitness Function
	C. Stopping Criteria

	Fig.€4. Pseudocode for evaluating the fitness of one chromosome.
	Fig.€5. Incremental approach to the GA with initialization schem
	D. Initial Population With Different ISs

	Fig.€6. Formation of a new rule in a chromosome.
	Fig.€7. (a) Illustration for integrating old chromosomes with ne
	TABLE I A LTERNATIVES ON THE F ORMATION OF A N EW P OPULATION
	Fig.€8. Biased crossover and mutation rates.
	E. Biased Mutation and Crossover
	V. E XPERIMENTAL R ESULTS AND P OSSIBLE A PPLICATIONS
	A. Experiment Scheme

	TABLE II D ATASETS U SED FOR THE E XPERIMENTS
	B. Results and Analysis

	Fig.€9. Simulation results show: (a) classifier agent evolving r
	TABLE III C OMPARISON OF THE P ERFORMANCE OF THE GA W ITH D IFFE
	TABLE IV C OMPARISON OF THE P ERFORMANCE OF THE GA W ITH D IFFER
	Fig.€10. Effect of mutation reduction rate α on the perfo
	Fig.€11. Effect of crossover reduction rate $\beta $ on the perf
	C. Further Applications of Incremental Learning With the GA

	TABLE V ILGA R ESULTS ON S OME D ATA S ETS
	Fig.€12. Performance comparison of CIGAs on the glass data.
	VI. D ISCUSSIONS

	TABLE VI C OMPARISON OF THE P ERFORMANCE OF THE GA W ITH S OME P
	VII. C ONCLUSIONS AND F UTURE W ORK
	G ENETIC O PERATORS
	P SEUDOCODE FOR THE F ORMATION OF A N EW P OPULATION U SING IS1,
	C. Giraud-Carrier, A note on the utility of incremental learning
	J. M. Bradshaw, Software Agent . Cambridge, MA: MIT Press, 1997.
	S. M. Weiss and C. A. Kulikowski, Computer Systems that Learn: C
	K. Yamauchi, N. Yamaguchi, and N. Ishii, Incremental learning me
	S. U. Guan and S. Li, Incremental learning with respect to new i
	L. Su, S. U. Guan, and Y. C. Yeo, Incremental self-growing neura
	K. A. DeJong and W. M. Spears, Learning concept classification r
	J. J. Merelo, A. Prieto, and F. Moran, Optimization of classifie
	H. Ishibuchi, T. Nakashima, and T. Murata, Performance evaluatio
	H. Ishibuchi and T. Nakashima, Improving the performance of fuzz
	H. Kang, Evolvable cellular classifiers, in Proc. Congr. Evoluti
	M. Setnes and H. Roubos, GA-Fuzzy modeling and classification: C
	D. B. Fogel, L. J. Fogel, and J. W. Atmar, Meta-evolutionary pro
	J. R. Koza, Genetic Programming . Cambridge, MA: MIT Press, 1992
	H. P. Schwefel and G. Rudolph, Contemporary evolution strategies
	J. H. Holland, Adaptation in Nature and Artificial Systems . Ann
	P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Learning Classifier
	A. L. Corcoran and S. Sen, Using real-valued genetic algorithm t
	L. Fu, H. Hsu, and J. C. Principe, Incremental backpropagation l
	R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, ${\rm Learn}++$
	F. Dalché-Buc and L. Ralaivola, Incremental learning algorithms
	F. S. Osorio and B. Amy, INSS: A hybrid system for constructive
	A. P. Engelbrecht and R. Brits, A clustering approach to increme
	J. H. Holland, Escaping brittleness: The possibilities of genera
	K. A. DeJong, Learning with genetic algorithms: An overview, Mac
	S. F. Smith, A Learning System Based on Genetic Adaptive Algorit
	E. Bernado, X. Llora, and J. M. Garrell, XCS and GALE: A compara
	G. Enee and C. Escazut, Classifier systems evolving multi-agent
	D. Caragea, A. Silvescu, and V. Honavar, Toward a theoretical fr
	D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
	C. L. Blake and C. J. Merz . (1998) UCI Repository of Machine Le
	L. Prechelt, PROBEN1: A set of Neural Network Benchmark Problems
	F. Zhu and S. U. Guan, Ordered incremental training with genetic
	C. Y. Cheah, Incremental Genetic Algorithm With the Real Michiga
	G. R. Harik and D. E. Goldberg, Learning linkage through probabi
	M. Pelikan, D. E. Goldberg, and E. Cantú-paz, Linkage problem, d
	Z. Michalewicz, Genetic Algorithms $+$ Data Structures $=$ Evolu

