
 1

A Multi-Agent Architecture for Electronic Payment

Sheng-Uei Guan and Feng Hua

Department of Electrical & Computer Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

ABSTRACT

The Internet has brought about innumerable changes to the way enterprises do business.

An essential problem to be solved before the widespread commercial use of the Internet is to

provide a trustworthy solution for electronic payment. We propose a multi-agent mediated

electronic payment architecture in this paper. It is aimed at providing an agent-based approach to

accommodate multiple e-payment schemes. Through a layered design of the payment structure

and a well-defined uniform payment interface, the architecture shows good scalability. When a

new e-payment scheme or implementation is available, it can be plugged into the framework

easily. In addition, we construct a framework allowing multiple agents to work cooperatively to

realize automation of electronic payment. A prototype has been built to illustrate the functionality

of this design. Finally we discuss the security issues.

Keywords: Electronic payment, Mobile agent, Electronic commerce, Cryptography

1. INTRODUCTION

1.1 EXISTING PROBLEMS IN E-COMMERCE

 The exponential development of the Internet has changed the way enterprises do

business. Electronic commerce is becoming an attractive means for conducting business

transactions. However, the progress of e-commerce seems to be hindered by the lack of a

widely accepted payment standard suitable for e-commerce.

Meanwhile, another factor stymieing electronic commerce is also emerging to the

surface. That is lack of intelligence. The vast size of information on the Internet also

means that it is difficult for potential customers to locate products that they are interested

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333820?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

in. Therefore, e-commerce demands advanced technologies as support. Agent technology

seems to be an excellent candidate with its properties of intelligence, autonomy, and

mobility. Agent based e-commerce has emerged and become the focus of the next

generation of e-commerce [18]. In this new approach, software agents act on behalf of

customers to carry out delegated tasks automatically. They support a natural merging of

object orientation and knowledge based technology to facilitate reasoning and learning.

1.2 MOTIVATION

Electronic commerce is growing at a tremendous pace, generating a market need

for payments of all types. Currently, there are multiple payment schemes like credit card

based systems (SET protocol [12]), electronic cash (DigiCash [4]), or electronic checks

available for a user. The diversity of payment mechanisms is beneficial since it will

create a broader spectrum for exploration of solutions. The needs for diverse payment

mechanisms could also be driven by user needs. For example, people pay by cash, check

or credit card. Online buyers may also choose their preferred payment methods to

complete transactions under different circumstances. Therefore, a system allowing buyers

to use different payment methods rather than a single one will give the buyers more

flexibility.

A lot of research has been carried out to study how to automate the purchase

process. For instance, research on how to automate the process of finding goods on the

web and negotiating better prices has been studied widely [6, 13]. Most research work

leverages on agent technology because automation needs intelligence. Agent technology

is a candidate for solutions.

 3

Payment is the last stage of the whole e-commerce process. Without automating

payment, the whole process is not automated. In case of multiple payment options

available for buyers to complete a transaction, intelligence is needed to choose the best

payment option. For instance, to a particular buyer, usually credit card is preferred over

e-cash for transactions. But if a merchant offers discount for e-cash payment, intelligence

is needed to choose e-cash as the payment method. In another example, if the buyer has

two credit card accounts and one of them has exceeded the limit, intelligence is needed to

choose the appropriate credit card account. Therefore an automated payment system

needs intelligence and agent technology can offer a solution.

An agent system may consist of a single or multiple agents. In a multi-agent

system, distributed control and cooperation among multiple agents will simplify each

agent’s modular function, speed up a system’s operation. Moreover, multi-agent systems

present more fault tolerance, since responsibilities are shared among agents.

We propose a multi-agent architecture for electronic payment in this paper. The

objective is to accommodate existing multiple payment methods and future payment

methods under a scalable architecture. Another objective is to provide a framework

allowing multiple agents to work cooperatively to automate the payment process.

 This paper is organized as follows: section 2 covers related research background.

Section 3 introduces our multi-agent architecture for e-payment. The overall architecture

and the interaction protocol among different entities in the framework are elaborated in

details. Section 4 discusses and evaluates our prototype. Section 5 compares our work to

related e-payment work. In the end, we conclude this paper and look into future work.

 4

2. BACKGROUND

2.1 BRIEF REVIEW OF CURRENT E-PAYPENT SCHEMES

In general, an e-payment system must exhibit integrity, authorization,

confidentiality, and anonymity for security requirements [1]. Additionally, there are some

other important characteristics such as interoperability, scalability, etc. Specific systems

are designed to meet specific requirements, and how these characteristics are balanced

poses a challenge to future development.

Payment systems can be classified in a variety of ways according to their

characteristics such as the exchange model (cash-like, check-like or hybrid), central

authority contact (online or offline), or hardware requirements (specific or general, etc.

For example, based on their exchange model, E- payment systems can be divided into

categories as shown in Figure 1.

Cash-like

Systems

Check-like

Systems

Hybird

Systems

Electronic Cash

(Notes, Coins)

Credit-Card

Based Systems

Credit-Debit

Based Systems

Stored-value Card

Based Systems

With

Cryptography

Without

Cryptography

Debit Cards

Electronic

Checks

Electronic

Payment

Systems

Figure 1. Classification of Electronic Payment Systems Based on the Exchange Model
The architecture proposed in this paper is built on top of current payment

schemes. We give a brief introduction of two typical payment schemes that are adopted

as the underlying payment mechanisms in our architecture.

 5

���� Secure Electronic Transaction (SET)

Currently, a common e-payment method involves a client transmitting to a

merchant detailed information of his payment card such as a VISA credit card. This

system is simple but susceptible to frauds from either transacting party. The Secure

Electronic Transaction (SET) protocol is an evolution of the existing credit-card based

payment systems [12]. It provides enhanced security for information transfer as well as

authentication of transaction participant identities by registration and certification. It has

the potential to become a de facto international standard.

���� Digital Cash (E-Cash)

Participants of electronic currency payment systems include payers (buyers),

merchants, and financial institutions. Digital cash uses electronic token (mostly a unique

coded string) to represent monetary value. The bank issuing the tokens has a record of all

the tokens. The acquiring bank of the merchants that receive the tokens will transfer them

to a clearing house to process them. When the tokens are verified by the issuing bank, the

real transaction of funds will take place and the tokens cannot be used again. The usage

of digital cash enables full anonymity that cannot be found in other payment systems.

Published schemes include E-Cash [2], NetCash, and CAFÉ [10], etc.

2.2.1 RELATED SAFER FRAMEWORK

The proposed e-payment architecture is built in the SAFER context, proposed in

earlier research work [5, 18, 22, 23]. We will only give a brief introduction to SAFER.

SAFER: Secure Agent Fabrication, Evolution and Roaming, is an infrastructure designed

to serve agents in e-commerce and establish necessary mechanisms to manipulate them.

 6

We consider the concept of a mobile agent community which is a basic unit in SAFER.

Figure 2 briefly sketches such a SAFER agent community.

Figure 2. SAFER Agent Communities

As shown in Figure 2, each SAFER community comprises various components

and entities. Detailed information of SAFER can be found in [18]. For the clarity of later

sections, we briefly introduce several entities involved in our architecture. They are the

owner, Agent Butler, Clearing House & Bank and Trusted Third Party (TTP).

The owner doesn’t need to be online all the time, but assigns tasks and makes

requests to agents via his Agent Butler. Depending on the authorization given, Agent

Butler can make decisions on behalf of the owner during his absence, and manage

various agents. Clearing House & Bank, as financial institutions in a SAFER community

link all value-representations to real money. TTP is a SAFER certified trusted host in a

community. Detailed roles of these entities will be discussed in section 3.

 7

 Besides those components, mobile agents are the basic units in the framework as

well. And in SAFER, it is desirable for agents to have roaming capability. Roaming

extends the agent’s capability well beyond the limitations imposed by its owner’s

computer. Mobile agents should be able to physically leave their owners’ machines and

perform their operations using the computing resources on hosting machines. Details of a

mobile agent transport protocol definition can be found in [16].

The payment architecture is considered as an integral part of SAFER hosting and

organizing multiple agents to realize automation of electronic transactions.

3. DESIGN OF THE MULTI-AGENT ELECTRONIC PAYMENT

ARCHITETURE

3.1 OVERALL NETWORK ARCHITECTURE

 In this section, we present the overall network picture of the payment architecture,

which contains necessary SAFER components involved in an e-payment transaction.

 As shown in Figure 3, there are five major entities in a typical electronic payment

transaction. They are Interconnected Financial Institutions, Trusted Third Party, Payment

Gateway, Online Shopping Server (Merchant Host), and Agent Butler (owner). These

entities as network nodes construct an architecture in which a realization of electronic

payment transaction may happen.

 Online Shopping Server represents an online e-commerce host, willing to receive

and run agents on its local machine. It possesses product information in a local database

for agents to access and extract data. Moreover, Merchant Host interacts with Agent

Butler and provides related services in case of e-payment transactions.

 8

 Financial Institutions consist of bank servers and clearing houses. As depicted in

Figure 3, the Issuer refers to the bank that establishes an account for the owner and issues

the payment card or electronic checks to the account. The Issuer guarantees payment for

authorized transactions using the payment card in accordance with payment card

regulations. The Acquirer is the bank that establishes an account with Merchant Host and

processes payment cards or validates authorizations and transactions. Payment is

implemented by a payer paying the payee via the Issuer and Acquirer [1]. E-Cash server

refers to the bank sever that handles issuing and verification of electronic currency.

Payment Gateway

Acquirer Issuer

Clearing House

Certificate

Authority

 Trusted Third Party
Interconnected

Financial Institutions

CardHolder Registration/

Require Certificate

Merchant Registration/

Require Certificate

E-Cash Sever

Clearing

Agent Butler (Owner)
Online Shopping Server

(Merchant Host)

Payment

Authorization/Capture

Check Cardholder

Account/

Request Payment

Verification/
Transaction

E-Cash
Deposit

E-Cash

Withdraw

Bank

Registration

Shopping/Purchase/

Dispatching Agents

Figure 3. Overall Network Architecture

In case that an inter-bank transaction could happen, or different payment forms

issued by various banks are adopted by involved hosts, a clearing house will be needed to

enable banks to exchange those different e-payment forms with one another and to

transfer credits among different SAFER communities. The Clearing House shown in this

 9

figure plays this role in the architecture, which facilitates inter-bank transactions

especially with large amount of money. Another role is that the Clearing House will be

needed to enable credit transactions between banks in SAFER communities and Non-

SAFER communities. Since the focus of our work is on consumer-to-business

transactions instead of business-to-business transactions, therefore we won’t elaborate the

Clearing House in further details in this paper.

Payment Gateway (PG) is viewed as the front end of Financial Institution. For

example, in a credit-card based system, it works as a device operated by the Acquirer that

processes merchant payment messages, including payment instructions from cardholders.

Trusted Third Parties, refer to some neutral SAFER certified trusted hosts in a

community. In this paper, the one related to our payment architecture is Certificate

Authority (CA). In order to facilitate the provision of security services such as privacy

(secure key exchange), non-repudiation (digital signature) and identification, a PKI-based

certification module will be used to establish identities for all SAFER entities. Therefore,

SAFER entities will be able to identify and authenticate each other in a distributed

environment. CA is such a provider of trusted digital certificates for each entity.

Agent Butler resides in a local environment as a static user agent and has a

number of functions pertaining to agent management. Agent Butler can dispatch mobile

agents to remote hosts. It is responsible for keeping track of agent activities and locations

by sending and receiving messages with them. Agent Butler carries out electronic

transactions through its Financing Agency (elaborated in the following). In addition,

Agent Butler maintains a user interface for interactions with its owner.

 10

3.2 MULTI-AGENT ARCHITECTURE

 In Figure 3, we present the whole network architecture. In this section, we will

zoom out and focus on the client based multi-agent structure. Under this structure, we use

federated multi-agents to accomplish a complex task. This approach suggests that agents

should be organized in a hierarchical structure. In a multi-agent e-commerce

environment, it is necessary to organize agents into different categories according to their

functionalities and competences.

 In the architecture, we use “agency” as a subsystem in which a collection of

cooperative intelligent agents with specific expertise reside, waiting for tasks from Agent

Butler or agency managers. An agency can be regarded as a multi-layered agent group or

a federation of agents with specific goal and functional role in the architecture [9]. In

other words, it is related to the category of agent classification and organization.

 Agencies are under the control of Agent Butler, who helps the owner to keep this

virtual environment in order. Under this master-slave design pattern, agents are well

organized. Meanwhile, the heavy load and responsibility of Agent Butler is relieved by

these well-defined agencies. Therefore, in our architecture, distributed automation and

central management are balanced. These agencies interact with each other under the

facilitation of Agent Butler and provide services such as information collection,

negotiation, decision-making, payment transaction and database maintenance, etc. The

agency organization and workflow is depicted in Figure 4. There are Information

Agency, Strategy Agency, Negotiation Agency and Financing Agency.

 11

Information Agency

Information agents

1. Authentication

2. Access merchant database

3. Gather information & report

Merchant Host
Database

Merchant Host

(Receptionist agent)Strategy Agency

Strategy agents

1. Information integration
2. Comparison & processing

3. Decision making & report

Negotiation Agency

Negotiation agents

1. Set price

2. Negotiate & counter offer

3. Place order
Local

Database
Financing Agency

Payment agent, Accountant

agent, Auditing agent
1. Payment transactions

2. Account management

3. Auditing

Owner
Agent Butler

(Owner)

UI

Figure 4. Multi-Agent Architecture

Among these agencies, Financing Agency is the focus in our payment

architecture, because only the agents in this agency are involved in payment-related

functions. When a purchase decision is made, Agent Butler will activate Financing

Agency to initiate a purchase request, and conduct payment in stages via software agents

within Financing Agency. More detailed information of Financing Agency and how the

agents within this agency collaborate to conduct automated payment transactions will be

elaborated in the following sections.

3.3 LAYERED PAYMENT STRUCTURE

In this section, we focus on the hierarchical structure of Financing Agency - a

layered payment structure as shown in Figure 5. The payment structure is divided into

three layers. They are service layer, interaction layer and payment mechanism layer. This

layered design decomposes a complex task into subtasks in which each group of subtasks

is aligned to a particular level of abstraction.

 12

The service layer defines a logical layer for different types of services available

for the owner, for instance, finance service, information service, etc. Each service is

provided by a particular agency. Agency defines the logical mapping for a particular

service. If the owner wants a particular service, it can interact with the particular agency.

The interaction layer contains entities that represent the agency to interact with

the owner or Agent Butler. Normally these entities are specific agency managers, which

control agent service groups (ASGs). A manager is assigned with a specific task by either

the owner or Agent Butler, and then it dispatches the task to one of its agents in the ASG

it controls. For instance, in order to perform an e-payment transaction, Agent Butler

needs to interact with Payment Manager in Financing Agency. Then Payment Manager

delegates the e-payment task to one of the payment agents in the payment mechanism

layer, referring to some payment scheme. Another example is if the owner needs to

register a credit card with Certificate Authority, he interacts with Account Manager in the

same agency. Account Manager will then delegate the registration task to the

SETRegister agent in the payment mechanism layer. Therefore the owner or Agent Butler

does not need to know which agent he is interacting with.

 13

Financing Agency

Payment
Manager

Account
Manager

Auditing
Manager

Owner
(Agent Butler)

Provide

User Interface

SET Payment

Agent

E-Cash Payment
Agent

SET Register

Agent

E-Wallet Manager

Payment

Reporter

SERVICE
LAYER

INTERACTION
LAYER

PAYMENT
MECHANISM

LAYER
Agent Service Groups

Other
Agencies

requests

Figure 5. Financing Agency in the Layered Payment Structure

The lowest layer is the payment mechanism layer. It contains agents to perform

tasks, for instance, payment via the SET protocol or electronic currency management. In

this layer we have Agent Service Groups (ASGs).

Each ASG defines a group of agents that perform similar tasks via different ways.

For instance, payment ASG defines a group of agents that are able to conduct e-payment

transactions via different protocols, allowing Payment Manager in the interaction layer to

manage them easily.

This layered design allows various e-payment schemes to be accommodated into

the payment architecture easily, because adding or removing a particular payment agent

object in the payment mechanism layer is transparent to the owner or Agent Butler. By

defining a uniform interface, agents that implement different payment schemes can be

activated by agency managers in the same way.

 14

3.4 ENTITY INTERACTIONS IN SET-BASED E-PAYMENT

By now, we have discussed entities in the architecture and the layered payment

structure. In this section, we present how these entities interact with each other to

complete an e-payment process using typical payment schemes. We use the SET protocol

[12] for credit card based payment as an example to illustrate this process (Figure 6).

In the above entity interaction diagram, we assume a purchase decision has been made,

and we proceed now with e-payment. There are two phases during a payment transaction

as shown in Figure 6 and particular steps are marked in sequence.

1. Agent Butler receives a purchase decision report from Strategy Agency based on

the data collected by mobile information agents.

2. According to pre-defined rules or authorization given by the owner, Agent Butler

needs to decide if it should proceed with the payment or it needs to ask for

approval or final decision from its owner. This may depend on the authorization

given, the amount involved in the payment transaction or some other factors.

3. Once Agent Butler decides to proceed, it delegates the payment task to Payment

Manager residing in Financing Agency.

4. Payment Manager invokes an available payment agent through a uniform

interface - PaymentAgent (elaborated in section 4) and delegates the payment task

to the agent that is able to handle a particular payment method.

 15

Owner

Agent Butler

Financing Agency

Payment
Manager

3

Other Managers

4

Merchant
Host

Payment
Gateway

Other Agencies

1

5.PInitReq

6.PInitRes

7.PaymenReq

10.PaymentRes

8.AuthReq

9.AuthRes

Financial
Network

2

Uniform Payment
Interface:

PaymentAgent

SETPayment

Agent
Phase 1

Phase 2

Figure 6. Entity Interaction Diagram for SET Based E-Payment

In step 4, since this e-payment transaction can be settled via different payment

methods, e.g. credit card, electronic cash, etc., hence Payment Manager needs to decide

which payment method to be used to complete this transaction. This is where intelligence

is needed by Payment Manager, which is an agent as well. The decision can be made by

Payment Manager, following certain rules set by the owner. These rules can be based on

the transaction and payment method information, for instance, the amount to be paid or

possible discount if paid by a particular brand of credit card. Based on the information

received, Payment Manager chooses a payment method to complete the payment process,

and then assigns the task to a related payment agent. In the above entity interaction

 16

diagram, we assume credit card payment method is chosen by Payment Manager to

complete the payment process, therefore the payment task is delegated to SETPayment

Agent which can complete a payment transaction following the SET protocol. And we

assume that the SET registration process with Certificate Authority has been done and

each entity is issued a set of certificates before a purchase request is made.

During steps 5 to 10 in phase two, SETPayment Agent firstly sends a payment

initialization request to Merchant Host. The two parties authenticate each other's identity

by exchanging their SET certificates and then SETPayment Agent transmits the

encrypted order and payment information to Merchant Host. Merchant Host uses the

payment information obtained from SETPayment Agent to make a payment authorization

request to Payment Gateway. If these payment instructions are approved, a token is sent

to Merchant Host who can make a payment capture request to Payment Gateway using

this token later. This would initiate the entire sequence of financial processing at the end

of which the actual funds will be deposited into the merchant's account.

3.5 ENTITY INTERACTIONS IN E-CASH PAYMENT

In this section, we use another example of e-cash to show how the architecture

accommodates different payment mechanisms. The entity interactions in an e-cash

payment process are depicted in Figure 7 and particular steps are marked in sequence.

In phase one, steps from 1 to 4 are similar to what we have discussed in section

3.4. The only difference is that in step 4, Payment Manager assigns the payment task to

ECashPayment Agent that can complete a payment transaction following the electronic

currency mechanism. Before a payment transaction may happen, there must be enough e-

coins stored in the wallet. Otherwise, E-Wallet Manager needs to generate new coins

 17

with desired value, and contact the E-Cash bank server, requesting for signing these

unauthorized e-coins.

Owner

Agent Butler

Financing Agency

Payment

Manager

3

4 Other Agencies

1

2

Uniform Payment

Agent Interface

ECashPayment
Agent

Account

Manager

E-Wallet
Manager Phase 1

Phase 2

Merchant Host
E-Cash Bank

Server

 N
ew

 coins statem
ent

W
ithdraw

 coins

5, 6 118

7

9. Validate/ Deposit
coins

10. Valid Indication

Figure 7. Entity Interaction Diagram for an E-Cash Payment Transaction

5. Having received a payment task, ECashPayment Agent sends a payment

initialization message to Merchant Host.

6. Merchant Host sends a payment confirmation message to the client’s payment

agent. This message contains details about the order amount, the currency to be

used, time stamp, and the merchant’s bank account ID.

7. After ECashPayment Agent verifies the order information, it checks with E-

Wallet Manager and requests for the very amount of e-coins.

 18

8. ECashPayment Agent sends to Merchant Host these e-coins which are encrypted

with the bank server’s public key.

9. Merchant Host forwards the coins to the bank for validation and deposit.

10. The bank checks these coins are valid and haven not been used before. It sends a

valid indication to Merchant Host and deposits the coins into his account.

11. Having received a valid payment, Merchant Host sends purchased items and a

receipt to ECashPayment Agent, completing this payment transaction process.

3.6 DISCUSSIONS

In the previous two sections, we have discussed the payment transaction processes

using SET and electronic currency as the underlying payment mechanisms. However, a

complete e-payment process does not only mean paying money to the merchant, it also

includes account management and payment transaction auditing. For each payment

protocol, we need a corresponding mechanism to maintain a specific account and keep

transaction records in a particular format. For instance, when using the SET protocol, we

need to register with Certificate Authority and keep an account which stores sensitive

information and maintains personal certificates. When using electronic currency, we also

need to maintain an account with the e-cash bank server and manage a local electronic

wallet which is used to generate or store e-cash. Therefore, as shown in Figure 5, the

interaction layer also includes Account Manager which controls its accounting ASG and

delegates tasks to specific account-managing agents. Likewise, there is an auditing

mechanism to provide support for recording and maintaining transaction history in case

of possible dispute with merchants and financial institutions or enquiry from the owner.

 19

Auditing Manager plays such a role in the architecture by controlling its auditing ASG

that may include recording agent or reporter agent.

The tradeoff of this layered design is that efficiency can be sacrificed to some

extent, because task invocation is indirect. However the overhead is not significant. The

correctness of e-payment is more important and it relies not on task invocation but on

payment logic. Besides, efficiency is not among the major concerns but security issues

are, which will be elaborated in section 4.3.2.

4. IMPLEMENTATION

4.1 SYSTEM OVERVIEW

 The prototype is implemented using the Java programming language. The reason

for choosing Java is that Java is an object-oriented and platform independent language,

which is suitable for implementing software agents. Besides, Java API includes a security

framework, in which various aspects of common security techniques are defined. These

security features are used to guarantee valuable data be encrypted when transmitted

between different entities over network. Additionally, a 3rd party security provider

OpenJCE by an Australian corporation ABA [19] was also adopted. This provider has the

necessary support for RSA public-key cryptography which is the main algorithm used in

our implementation.

4.2 PROTOTYPE IMPLEMENTATION

4.2.1 Agent Butler

The implementation of the payment architecture began with the simulation of

Agent Butler. Agent Butler is able to perform tasks in parallel with its mobile agents. It is

 20

responsible for controlling agencies, tracking mobile agent actions, making final

decisions. In addition, this stationary Agent Butler provides a GUI to accept data input

and display instantaneously to the owner intermediate results of a specific task performed

remotely. The modular structure of Agent Butler is depicted in Figure 8.

Agent Butler

Graphic User

Interface

Archive
Database

Information Agency

Financing Agency

ButlerListener

ButlerCommunicator

Authentication

Agent Dispatch

Registration

Purchase

Agency Controller Agent Communicator

Functional Modules

Figure 8. Modular Structure of Agent Butler

As shown Figure 8, Agent Butler has two main function modules, agency

controller and agent communicator. In addition, a database object is owned by Agent

Butler and stores information including merchant host information, owner’s preferences,

etc. Such data may be passed to the related agency objects when needed. Agency

controller is responsible for activating specific agency according to certain workflow. It

is implemented as a member object within the class of Agent Butler. Agent communicator

handles external socket communications with dispatched mobile agents. ButlerListener

waits for messages from agents in remote hosts, while ButlerCommunicator is capable of

 21

sending messages to these agents. Figure 9 shows the trace of the communication process

between Agent Butler and a mobile agent to be dispatched.

Figure 9. Sample Screenshot of Agent Dispatch and Communication

4.2.2 Financing Agency

Financing Agency is implemented as a composite class. It contains a payment

manager object and an account manager object. Composition is a form of aggregation

with strong ownership and coincident lifetime as part of the whole. Parts with non-fixed

multiplicity may be created after the composite itself, but once created they live and die

with it. The two managers are instantiated in the constructor of the Financing Agency

class. Therefore, they can be accessed via certain access methods (e.g.

getPaymentManager()) provided by Financing Agency. These two managers are also

composite classes, which consist of different agents corresponding to specific payment

schemes. In this prototype implementation, two types of payment agents are implemented

in Financing Agency. They are SETPaymentAgent and EcashPaymentAgent.

SETPaymentAgent is implemented by following the SET protocol. EcashPaymentAgent

pays by E-Cash, which is defined as shown in Figure 10. SerialNumber is simulated as a

 22

randomly generated 50-digit numeric string. Value denotes the value that this E-Cash

object represents. Signed denotes whether E-Cash has been certified by the bank server.

Expiration Date denotes the expiration date of E-Cash.

 public class ECash extends Object
 { private String serialNumber;

private double value;
private boolean signed;
private Date expirationDate;

 }

Figure 10. Sample Code of E-Cash

An electronic wallet class is implemented in a local environment, which could be

used to manage, generate, and store e-cash. This e-wallet is controlled by E-Wallet

Manager belonging to the accounting ASG (Figure 5). When the owner needs some cash,

E-Wallet Manager will be activated by Account Manager to interact with the bank server.

The screenshot of the e-wallet is shown in Figure 11.

Figure 11. Sample Screenshot of the Electronic Wallet

4.2.3 Uniform Payment Interface

 23

As discussed in section 3.4 and 3.5, other payment schemes can be easily

implemented and integrated into the architecture via a uniform payment interface -

PaymentAgent. The following code in Figure 12 demonstrates how we define this

interface.

 Payment Interface:

 public interface PaymentAgent
 { public PaymentInvoice proceedPayment

(PurchaseInfo [] purchases,
 MerchantInfo merchant);

 }

 public class PaymentInvoice
 { private ItemInvoice[] itemInvoice;

private double totalAmount;
 }

 public class ItemInvoice
 { private String name;

private double amount;
private long purchaseTimestamp;

 }

 public class PurchaseInfo
 { private String name;

private int quantity;
private double unitPrice;

 }

 public class MerchantInfo
 { private hostName;

private int portNumber;
 }

Figure 12. Sample Code of the Uniform Payment Interface

This sample code describes the interface that is implemented by each payment

agent object. By defining an interface and forcing each payment agent to implement it,

Payment Manager is able to invoke different payment agents in a uniform way. There are

more than one payment agent embedded with specific payment mechanism logic in the

system. Moreover, decision on which agent to complete the payment task is made during

runtime by Payment Manager based on certain rules. Therefore, without defining an

interface, Payment Manager has to know each agent to which it delegates the payment

 24

task and which method of the chosen agent should be invoked. It makes the system hard

to extend because adding a new agent requires adding the logic of invoking this agent in

the Payment Manager class.

 Since payment agents that implement different payment schemes are invoked via

this uniform payment interface, therefore the parameters of the interface methods must

provide enough information to allow agents to carry out their payment schemes. To carry

out a payment scheme, an agent needs to know what to buy as well as where to buy. As

shown in Figure 12, the PurchaseInfo class contains information regarding what to buy

and the MerchantInfo class contains information regarding where to buy. They are passed

as arguments into the method proceedPayment(). The PaymentInvoice class returned by

proceedPayment()contains the details of each item purchased. It is recorded and can be

used by Auditing Manager for later usage. Payment Manager delegates the payment task

by selecting a payment agent and then invokes the proceedPayment() method

implemented by the payment agent.

4.2.4 Payment Configuration

A configuration file is also needed to define which payment methods are available

in the system. By editing the configuration file, a user is able to add or remove payment

methods easily. The parameters defined in configuration file are listed in the following:

� NumberOfPaymentMethods: It indicates how many payment methods are

defined in the configuration file.

� PaymentMethod(n)Name: It defines the name of the n-th payment method.

The value is a string, which represents the payment method.

 25

� PaymentMethod(n)Impl: It defines the implementation of the n-th payment

method. The value is a string, which denotes the class name of the payment

method implementation. An object of this class is instantiated to execute the

payment method.

� PaymentMethod(n)On: It flags whether this payment method is activated by

the system. The value can be true or false. True means the system is able to

activate this payment method. False means although the payment method is

defined in the configuration file, the system has not activated it.

The configuration file is read in during system startup. A GUI is provided to

allow the user to select and activate a payment method. The name of each payment

method defined in the configuration file (PaymentMethod(n)Name) will be shown on the

display. Once the user selects a payment method, a payment object of its implementation

class specified in the configuration file as PaymentMethod(n)Impl is created. Since all

payment method classes implement the uniform payment interface, so a payment process

can be activated by invoking the interface implemented by the corresponding payment

object. We elaborate with a sample of the configuration file as shown in Figure 13.

 NumberOfPaymentMethods=2

 PaymentMethod1Name=SET
 PaymentMethod1Impl=edu.nus.cnn.epayment.set.SETAgent
 PaymentMethod1On=true

 PaymentMethod2Name=ECash
 PaymentMethod2Impl=edu.nus.cnn.epayment.ecash.ECashAgent
 PaymentMethod2On=true

Figure 13. Configuration File Sample 1

The sample in Figure 13 defines two payment methods. One is based on the SET

protocol and the other is based on the E-Cash payment scheme. The class that provides

 26

the implementation of the SET protocol is edu.nus.cnn.epayment.set.SETPaymentAgent.

The class that provides the implementation of the E-Cash payment scheme is

edu.nus.cnn.epayment.ecash.EcashPaymentAgent. Accordingly, "SET" and "ECash" are

loaded into the GUI selection list from which the user chooses a payment method. The

user can either choose "SET" or "ECash" as the payment method. If the user chooses

"SET", an object of class edu.nus.cnn.epayment.set.SETPaymentAgent is created. The

implemented uniform payment interface is invoked on that SETPaymentAgent object, so

that payment can be executed via the SET protocol. If the user chooses "ECash", an

object of class edu.nus.cnn.epayment.set.ECashPaymentAgent is created. The

implemented uniform payment interface is invoked on that ECashPaymentAgent object

and payment can be executed via the E-Cash payment scheme.

4.2.5 Automated Payment

To automate the whole payment process, we have incorporated a rule-based

decision capability into Payment Manager to automate the decision process of choosing a

payment agent. A simple scheme is suggested in our architecture. A set of rules is defined

in a rule-base for choosing a specific payment method under certain conditions. The

template of a rule base is shown in Figure 14.

 NumberOfRules=n

 Rule(n)Priority =
 Rule(n)Factor =
 Rule(n)Condition =
 Rule(n)PaymentMethodName =

Figure 14. Rule Base Template

NumberOfRules specifies how many rules are defined in the rule base. In the

template, each rule owns a unique ID, which is marked as “(n)” in the above figure.

 27

Additionally, each rule has four attributes, namely Priority, Factor, Condition, and

PaymentMethodName. The meaning of each will be clear after we go through the

following example.

Figure 15. Rule Base Sample

We have incorporated a rule-based decision facility into Payment Manager to

automate the decision process of choosing a payment agent. A simple scheme is included

in our architecture. A set of rules is defined in a rule base for choosing a specific payment

method under certain conditions. Each rule has one factor that specifies the selection

condition with certain priority denotation. Rules are validated in the priority order. Once

a rule is valid, the corresponding payment method is chosen. A sample rule base is shown

in Figure 15.

The rule base sample defines some rules of selecting a payment method. The first

rule has the highest priority 1. The decision factor is cash discount and transaction

amount. This rule is valid provided that there is a discount offer for a cash payment and

the transaction amount is less than $50. The second rule has a lower priority 2. The

decision factor is transaction amount. This rule is valid provided that the transaction

amount is less than $100. Payment Manager evaluates all the rules defined in the rule

Rule1Priority=1

Rule1Factor= cash-discount & transact-amount

Rule1Condition= (credit-card-discount is true)&(transact-amount

< 50)

Rule1PaymentMethodName=ECash

Rule2Priority=2

Rule2Factor= transact-amount

Rule2Condition=transact-amount < 100

Rule2PaymentMethodName=SET

… … …

 28

base in the priority order. Payment Manager checks whether the condition of the first rule

is met. If met, Payment Manager selects ECash as the payment method. Otherwise,

Payment Manager continues to evaluate the next rule. If all rules are invalid, Payment

Manager can report to the owner and wait for his decision.

4.3 EVALUATION AND DISCUSSIONS

4.3.1 Flexibility

The rationale of designing a multi-agent electronic payment architecture is to

provide a framework, which can accommodate different types of payment methods. The

prototype is built to illustrate this rationale. The purpose of this prototype is not to build a

full-fledged e-payment system, rather it builds a foundation to allow a full functional e-

payment system to be built incrementally on top of it. Therefore the focus of the

prototype is to define a uniform payment interface, build two types of e-payment agents

(i.e. SET and E-Cash) and incorporate the encryption/decryption capability to guarantee a

secure transaction.

 NumberOfPaymentMethods=3

 PaymentMethod1Name=SET
 PaymentMethod1Impl=edu.nus.cnn.epayment.set.SETAgent
 PaymentMethod1On=true

 PaymentMethod2Name=ECash
 PaymentMethod2Impl=edu.nus.cnn.epayment.ecash.ECashAgent
 PaymentMethod2On=true

 PaymentMethod3Name=ECheck
 PaymentMethod3Impl=edu.nus.cnn.epayment.echeck.ECheckPaymentAgent
 PaymentMethod3On=true

Figure 16. Configuration File Sample 2

 In the following, we demonstrate how a new payment method can be plugged into

the system easily. For instance, another payment method ECheck is implemented by the

 29

class edu.nus.cnn.epayment.echeck.ECheckPaymentAgent. To add it into the system, we

only need to change the configuration file as shown in Figure 16.

After the system is restarted, the new configuration file is read. Then, the

additional payment method ECheck is available from the GUI selection list. If the user

chooses ECheck, an object of class edu.nus.cnn.epayment.set.ECheckPaymentAgent is

created. The uniform payment interface implemented by ECheckPaymentAgent is

invoked and payment can be executed via the ECheck payment scheme.

To remove or disable a payment method, the user can either remove the entry

from the configuration file or simply turn that payment method off by setting

"PaymentMethod(n)On=false".

4.3.2 Security

Security is one of the most important issues in electronic payment transactions,

e.g. secure data transmission. In mobile agent computing, the security issues also include

the security of mobile agents against dishonest shopping servers and the security of

shopping servers against malicious agents.

First of all, each entity has to register with Certificate Authority for a set of

personal certificates, which are used to enable secure data transmission and to

authenticate its identity before any interaction may happen. When mobile agents are sent

out to a remote merchant host to collect useful product information, the host always

requires adequate authentication proof before accepting further interaction with an agent.

Agent Butler is regarded as the owner’s legal representative and provided with the

owner’s certificate and a signature on the Agent Butler’s public key and identification

number. Before a mobile agent is sent out, Agent Butler sends its authentication proof to

 30

the host and requests for a permission token which will be used later as part of the mobile

agent’s identity validation. Therefore, the host will only accommodate mobile agents

from users it trusts.

On the other hand, since Agent Butler is a static user agent staying on the owner’s

host, thus its integrity is guaranteed. Before sending out a mobile agent, Agent Butler

also needs to check the authenticity of a merchant host by requesting for its certificate. In

our system, mobile agents are not embedded with payment functionalities, therefore they

do not carry sensitive information such as payment information when roaming on the

Internet. This would decrease the possibility of its being attacked by malicious hosts.

However, the product information gathered from previous merchant hosts may be a target

of malicious hosts, therefore, there should be some measure to protect and verify the

integrity of mobile agents. Since it is not the focus of this paper, we won’t discuss this

issue in details. Related research work has been carried out by the SAFER research group

[14, 20].

 When e-payment transactions are in progress, in order to ensure the integrity of

various messages sent and received during an e-cash or SET transaction, all messages are

digitally signed with the originating entity’s private key. The receiving entity would be

able to use the sender’s public key from its key-exchange certificate to verify that the

message has not been tampered with as well as authenticate the identity of the sending

party. To protect the information in the messages from being exposed to unauthorized

parties, the message contents are also encrypted whenever possible using a combination

of both symmetric and public-key encryption techniques.

4.3.3 Performance Analysis

 31

The objective of the performance testing is to measure how long it takes to

complete a payment transaction and to analyze the system performance. We

benchmarked the two types of payment methods implemented in our system: SET-based

credit-card payment and E-cash payment.

� Credit-card based payment performance result

The average performance result shown in Table 1 was concluded from more than

10 tests. The average period of time that one credit-card payment transaction takes is

1300 milliseconds. Each credit-card payment transaction consists of four main steps

which were also benchmarked in Table 1.

Table 1 Credit-card Transaction Average Performance Result

Total
Transaction time (ms)

Transaction
Initiation (ms)

Merchant
Certificate (ms)

Data
Encryption (ms)

Payment
Confirmation (ms)

1300 10 160 60 1070

� E-cash payment performance result

As shown in Table 2, the average time of an E-cash payment transaction is 630

milliseconds. Each E-cash payment transaction consists of several main steps which were

also benchmarked in Table 2.

Table 2 E-cash Transaction Performance Breakdown

Total
Transaction time

(ms)

Transaction
Initiation

 (ms)

Merchant
Certificate

(ms)

E-cash
Withdraw

(ms)

Data
Encryption

(ms)

Payment
Confirmation

(ms)

630 10 160 10 60 390

Based on the testing results discussed above, we compare the performance of the two

payment methods. We notice that the SET protocol based credit card payment takes

longer processing time than E-cash payment. Specifically, we find out that the difference

 32

mostly exists in the last step, payment confirmation, where the real payment transaction

happens at the Merchant side. It takes 1070 milliseconds to finish the step for credit card

payment method and 390 milliseconds for E-cash payment method.

However, this difference is reasonable and also expectable in our design. Most of

the time costs are spent on message exchanges among different entities as well as the

encryption/decryption processing. The SET protocol aims to provide more secure

guarantee for e-payment by separating the communication only to related parties in

certain steps of the payment process and encrypting all the messages exchanged. In the

last step, the Owner, Merchant Host, Payment Gateway (PG) and Certificate Authority

(CA) are all involved in message exchanges. In addition, PG and CA are requested to

validate the Owner’s payment information (related to the Owner’s account) before the

Merchant can send out payment confirmation to the SET payment agent. The whole

process is time consuming. In comparison, E-cash payment is simpler. When the

Merchant receives the E-cash notes, it only needs to contact the E-cash bank server to

deposit the E-cash. The bank server will validate E-cash. If all the E-cash notes are valid,

the bank will send a deposit confirmation to the Merchant who will send out the payment

confirmation to the E-cash payment agent. E-cash payment is more efficient than SET-

based credit card payment. However, the E-cash bank server needs to validate the E-cash

notes one by one. When there is a large amount of E-cash being used, the processing time

for E-cash payment will increase accordingly. Therefore, from these facts and analysis,

we highly recommend using E-cash payment in small-amount transactions for efficiency

and cost saving concern, and using SET-based credit card payment in large-amount

transactions.

 33

4.3.4 Discussions

Agent Butler represents its owner and is responsible for agent management and

manipulation. When the owner wants to buy some products from some merchant hosts

within the SAFER community, he authorizes his Agent Butler to dispatch mobile agents

to collect useful information on his behalf. This is done as follows. Firstly, the owner

issues Agent Butler a set of encryption keys (SKAo, PKAo). Then, the owner authorizes

Agent Butler as his legal representative by providing it with his digital certificate

(registered with CA) and signing the ID of Agent Butler. In addition, the owner also

provides his shopping requirements and a list of trusted merchant hosts’ URLs to Agent

Butler.

Mobile agents in this prototype do not have the functionality or authority to carry

out electronic payment transactions on its own. At this stage, it is still difficult to

safeguard agents dispatched to external entities. Vital payment information is thus

retained in Agent Butler where it can be easily secured. Transactions are tightly

controlled by Agent Butler via its Financing Agency. In the future, when a certain level

of integrity and secrecy can be achieved for mobile agents, payment functions could then

be incorporated into them.

Compatibility issues arise when integrating different agents into e-commerce

websites for transactions. It is suggested that the use of an agent based virtual

marketplace could be a stopgap solution before certain protocol standards could be

imposed. Virtual marketplace, also under research, considered to be an integral part of

SAFER application would also bring with it enhanced security features. Recent work on

Semantic Web [8] may offer a long-term solution.

 34

5. RELATED WORK

One research project called BABSy [11] proposed by Rockinger, et al. is also

based on the consumer buying behavior model listed above. It is claimed to be an

accounting system that helps automated payment in an agent based e-commerce

environment. In BABSy, there are only three types of agents which represent the three

parties involved in an e-commerce transaction: merchant, bank and user. They are service

agent, accounting agent and user agent.

BABSy does not provide a flexible framework that allows more payment

mechanisms to be added in future, since adding a new payment method requires

modifying the whole user agent. In addition, this approach does not facilitate reusability,

since all functionalities are encapsulated inside a single agent of each party.

Research work of an Agent-based Bill Payment Service (ABPS) [15] is also

conducted at Queensland University. Their system is hosted on a website which is

certified digitally. Consumers must first register with ABPS by providing their personal

information. To acquire services, customers authorize an ABPS payment agent to pay the

related parties. In their system, the payment agent is responsible for obtaining settlement

instructions and settling bills via appropriate financial institutes or external payment

services.

ABPS is also centralized to some extent. Except for the payment agent in ABPS,

software agents are not explicitly used by participants in their systems. The heavy burden

of managing an ever-increasing knowledge base and the growing load for the single

payment agent server will be a problem. Our payment scheme avoids a centralized

architecture. Instead, we adopted a master-slave design pattern, making use of

 35

coopereative multi-agents. Different types of agents are clearly defined and are embedded

with certain functional modules as well as decision-making logic according to their

function level and roles in the system.

Project Eleanor [25] is an Identrus initiative to introduce secure, direct business-

to-business payments on the Internet. Project Eleanor aims to provide Web-based

specifications to initiate B2B payments on traditional bank systems. Project Eleanor

includes six B2B e-payment options, including payment orders, conditional payment

orders, etc. Trading partners will have pre-established instructions with their banks for

payment authorization, routing and settlement.

The focus of Eleanor is corporate users and financial institutions. Our payment

architecture is to provide business-to-consumer payment solutions. Eleanor is not

designed to support a flexible set of payment options that can be easily plugged in. It is

more like a clearing-house, or a third party that handles bank-to-bank transactions.

As a different example, the IBM Multi-payment Framework (MPF) offers a suite of

software products enabling merchants to use multiple types of payment in Internet

commerce [24]. The kernel of the framework is implemented in the IBM WebSphere

Payment Manager which is an electronic cash register for merchants. This is an offering

for service providers to host payment for multiple remote merchants. It allows merchants

to receive payments from consumers on the Internet and to process those payments with

banks and financial institutions. Their system enabled merchants to provide or utilize as

many payment mechanisms as the customers may need.

The objective of MPF is to provide the capabilities to support multiple payment

options for merchants. Therefore merchants in their system are able to deal with

 36

consumers who pay in a way that may be different from each other. Our payment

architecture is to allow consumers to be able to use different payment methods to pay

when they deal with different merchants. MPF and our payment architecture both address

the issue of bridging different payment methods between merchants and consumers, but

from different perspectives. MPF addresses the problem from the merchant’s perspective

by providing multiple payment capability on the merchant side. Our system addresses the

problem from the consumer’s perspective by providing multiple payment capabilities on

the consumer side. These two systems should complement each other to provide the

greatest flexibilities to all entities involved in e-commerce.

In terms of design, MPF has a similar approach as our agent based payment

architecture. It has a layered design and some common interfaces. So different payment

methods can be plugged in easily. But their framework does not provide intelligence to

choose the best payment option from the merchant’s view. In contrast, our system has the

capabilities to automatically choose the best payment option for the consumers by using

agents based on defined rules.

6. CONCLUSIONS

In this paper, we proposed a multi-agent payment architecture for e-commerce

applications. The goal of this architecture is to allow the coexistence of a variety of

payment mechanisms and to provide support for multiple agents to collaborate. To

achieve these objectives, we adopted a layered design that decomposes a task into

subtasks, in which each group of subtasks is aligned to a particular level of abstraction.

Payment functionality is fulfilled in Financing Agency, in which, related payment agent

objects will handle the details of payment. Users can be relieved from the details of

 37

various payment mechanisms. The clearly defined payment interface also facilitates the

addition of new payment modules easily. Therefore, the architecture shows greater

flexibility and scalability than existing approaches.

REFERENCES

[1] Asokan, N. and Janson, P.A. (1997). The State of the Art in Electronic Payment Systems.
Computer, 30 (9), pp. 28 –35.
[2] Brands, S. (1995). Electronic Cash on the Internet. Network and Distributed System Security,
1995. Proc. of the Symposium, pp. 64 –84.
[3] Chavez, A. and Maes, P. (1996). Kasbah: An Agent Marketplace for Buying and Selling
goods, in Proceedings of First International Conference on Practical Application of Intelligent
Agents and Multi-Agent Technology, London, pp. 75-90.
[4] DigiCash: DigiCash brochure. Available at http://www.digicash.com
[5] Guan, S.U. and Yang, Y. (1999). SAFE: Secure-Roaming Agent For E-Commerce, 26th
International Conference on Computers & Industrial Engineering, Australia.
[6] Guttman, R.H. and Maes, P. (1999). Agent-Mediated Negotiation for Retail Electronic
Commerce, in Agent Mediated Electronic Commerce. First International Workshop on Agent
Mediated Electronic Trading. In Noriega, P., and Sierra, C. (Ed.), Springer, Berlin, pp. 70-90.
[7] Hanaoka, G., Zheng, Y. L. and Imai, H. (1998). LITESET: A Light-Weight Secure Electronic
Transaction Protocol. Information Security and Privacy – ACISP’98 LNCS, Vol. 1438, Springer-
Verlag, pp. 215-226.
[8] Heflin and Hendler, J. (2000). Semantic Interoperability on the Web. Proc. of Extreme
Markup Language 2000, Graphic Communications Assoc., Montreal, pp. 111-120.
[9] Hua, F. and Guan, S.U. (2000). Agents and Payment Systems in E-commerce. In Rahman,
S.M. and Bignall, R.J. (Eds.), Internet Commerce and Software Agents: Cases, Technologies and
Opportunities. IDEA Group Publishing, pp. 317-330.
[10] Mjolsnes, S.F. and Michelsen, R. (1997). CAFÉ. Open Transactional System for Digital
Currency Payment System Sciences. Proc. of the 13th Hawaii International Conference. Volume:
5, pp. 198-207.
[11] Rockinger, R. and Baumeister, H. (2000). BABSy: Basic Agent Framework Billing System.
Proc. of the International ICSC Symposia on Multi-Agents and Mobile Agents in Virtual
Organizations and E-Commerce (MAMA’2000), Wollongong, Australia.
[12] SET: The SET Standard Book 1 Business Description,
http://www.setco.org/download.html/#spec
[13] Wang, T.H. and Guan, S.U. (2000). An Agent Based Auction Services for Electronic
Commerce. Proc. of International ICSC Congress on Intelligent System & Applications, CD
#1524-045.
[14] Wang, T.H. and Guan, S.U. (2001). Integrity Protection for Code-on-Demand Mobile
Agents in E-Commerce. Accepted, to appear in Journal of Systems and Software.
[15] Wong, O. and Lau, R. (2000). Possibilistic Reasoning for Intelligent Payment Agents. Proc.
of the Second Workshop on AI in Electronic Commerce (AIEC, 2000), pp. 1-13.
[16] Yang, Y. and Guan, S.U. (2000). Intelligent Mobile Agents for E-Commerce: Security Issues
and Agent Transport, in Electronic Commerce: Opportunities and Challenges. In Rahman, S.M.
and Raisinghani, M. (Ed.), Idea Group, PA., pp. 321-336.
[17] Youll, J. (2001). Agent-Based Electronic Commerce: Opportunities and Challenges. Proc. of
the 5th International Symposium on Autonomous Decentralized System, pp. 146-148.

 38

[18] Zhu, F.M., Guan, S.U. and Yang, Y. (2000). SAFER E-Commerce: Secure Agent
Fabrication, Evolution & Roaming for E-Commerce, in Internet Commerce and Software Agents:
Cases, Technologies and Opportunities. In Rahman, S.M. and Bignall, R.J. (Ed.), Idea Group,
PA., pp. 190-206.
[19] JCA/JCE Application Programming Interface Overview,
http://www.openjce.org/docs/jce_api_overview.html
[20] Wang, T.H. and Guan, S.U. (2001). Protecting Integrity for Code-on-Demand Mobile
Agents in E-Commerce. Proc. of the First International Workshop on Internet Computing and E-
Commerce (ICEC'01), San Francisco, California, USA.
[21] Romao, A. and Silva, M. M. D. (1998). An Agent-Based Secure Internet Payment System
for Mobile Computing. Trends in Distributed Systems for Electronic Commerce. Proceedings
International IFIP/GI Working Conference TREC'98, 1998, pp. 80-93.
[22] Guan, S.U. and Zhu, F.M. (2002). Agent fabrication and its implementation for agent-based
electronic commerce, International Journal of Information Technology & Decision Making, 1 (3),
pp. 473-489.
[23] Guan, S.U., Zhu, F.M., and Ko, C.C. (2000). Agent Fabrication and Authorization in Agent-
based Electronic Commerce. Proceedings of International ICSC Symposium on Multi-Agents and
Mobile Agents in Virtual Organizations and E-Commerce, Wollongong, Australia, 528-534.
[24] IBM WebSphere Payment Manager:
http://www-3.ibm.com/software/webservers/commerce/paymentmanager/
[25] Identrus and its Project Eleanor: http://www.identrus.com/products/eleanor.xml

