92 research outputs found

    Recess: More Than Just Play Time

    Get PDF

    Inelastic scattering of broadband electron wave packets driven by an intense mid-infrared laser field

    Full text link
    Intense, 100 fs laser pulses at 3.2 and 3.6 um are used to generate, by multi-photon ionization, broadband wave packets with up to 400 eV of kinetic energy and charge states up to Xe+6. The multiple ionization pathways are well described by a white electron wave packet and field-free inelastic cross sections, averaged over the intensity-dependent energy distribution for (e,ne) electron impact ionization. The analysis also suggests a contribution from a 4d core excitation in xenon

    Erratum to: EuPRAXIA Conceptual Design Report – Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8

    Get PDF
    International audienceThe online version of the original article can be found at http://https://doi.org/10.1140/epjst/e2020-000127-8</A

    The bile salt glycocholate induces global changes in gene and protein expression and activates virulence in enterotoxigenic Escherichia coli

    Get PDF
    Pathogenic bacteria use specific host factors to modulate virulence and stress responses during infection. We found previously that the host factor bile and the bile component glyco-conjugated cholate (NaGCH, sodium glycocholate) upregulate the colonization factor CS5 in enterotoxigenic Escherichia coli (ETEC). To further understand the global regulatory effects of bile and NaGCH, we performed Illumina RNA-Seq and found that crude bile and NaGCH altered the expression of 61 genes in CS5 + CS6 ETEC isolates. The most striking finding was high induction of the CS5 operon (csfA-F), its putative transcription factor csvR, and the putative ETEC virulence factor cexE. iTRAQ-coupled LC-MS/MS proteomic analyses verified induction of the plasmid-borne virulence proteins CS5 and CexE and also showed that NaGCH affected the expression of bacterial membrane proteins. Furthermore, NaGCH induced bacteria to aggregate, increased their adherence to epithelial cells, and reduced their motility. Our results indicate that CS5 + CS6 ETEC use NaGCH present in the small intestine as a signal to initiate colonization of the epithelium

    Laser-induced electron diffraction for probing rare gas atoms

    Get PDF
    Recently, using midinfrared laser-induced electron diffraction (LIED), snapshots of a vibrating diatomic molecule on a femtosecond time scale have been captured [C. I. Blaga et al., Nature (London) 483, 194 (2012)]. In this Letter, a comprehensive treatment for the atomic LIED response is reported, a critical step in generalizing this imaging method. Electron-ion differential cross sections (DCSs) of rare gas atoms are extracted from measured angular-resolved, high-energy electron momentum distributions generated by intense midinfrared lasers. Following strong-field ionization, the high-energy electrons result from elastic rescattering of a field-driven wave packet with the parent ion. For recollision energies 100 eV, the measured DCSs are indistinguishable for the neutral atoms and ions, illustrating the close collision nature of this interaction. The extracted DCSs are found to be independent of laser parameters, in agreement with theory. This study establishes the key ingredients for applying LIED to femtosecond molecular imaging

    OBSERVATION OF FEMTOSECOND, SUB-ANGSTROM MOLECULAR BOND RELAXATION USING LASER-INDUCED ELECTRON DIFFRACTION

    No full text
    Author Institution: Department of Physics, The Ohio State University, Columbus, OH 43210; Department of Physics, Kansas State University, Manhattan, KS 66506; Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University, Columbus, OH 43210Imaging, or the determination of the atomic positions in molecules, has always occupied an essential role in physical, chemical and biological sciences. For structural determination, the well established methods of X-ray and electron diffraction easily achieve sub-Angstrom spatial resolution. However, these conventional approaches are not suitable for investigating structural transformations, such as the reaction of molecules or the function of biological systems that occur on the timescales faster than a picosecond. Over the past decade, major efforts directed at developing femtosecond pulsed sources, e.g. X-ray free-electron lasers and electron beams, have resulted in pioneering investigations on imaging large biological molecules and condensed phase dynamics. We report on a different approach, laser-induced electron diffraction (LIED), for achieving sub-femtosecond, sub-Angstrom spatio-temporal resolution for investigating gas-phase molecular dynamics. In contrast to the above mentioned techniques, the LIED method generates bursts of coherent electron wave packets directly from the molecule under interrogation. The study is performed by measuring the diffracted photoelectron momentum distribution produced by strong-field ionization of oxygen and nitrogen molecules at several mid-infrared wavelengths (1.7-2.3 ÎĽ\mum). The bond lengths retrieved from the LIED analysis show sensitivity to a change of 0.05 \AA ~in 1 fs. This initial report provides the first direct evidence of bond relaxation following an electronic excitation and establishes the foundation of the LIED method as a general approach for ultrafast imaging of molecular dynamics
    • …
    corecore