431 research outputs found

    On some iterated weighted spaces

    Get PDF
    [EN] It is proved that Hormander Bp,kloc (Omega 1 x Omega 2) and B-p,k1(loc) (Omega 1, B-p,k2(loc) (Omega(2))) spaces (Omega(1) subset of R-n, Omega(2) subset of R-m open sets, 1 <= p < infinity, k(i) Beurling-Bjorck weights, k = k(1) circle times k(2)) are isomorphic whereas the iterated spaces B-p,k1(loc) (Omega 1, B-p,k2(loc) (Omega(2))) and B-p,k2(loc) (Omega 1, B-p,k1(loc) (Omega(1))) are not if 1 < p not equal q < infinity. A similar result for weighted L-p-spaces of entire analytic functions is also obtained. Finally a result on iterated Besov spaces is given: B-2,q(s) (R-n, B-2,q(s) (R-m)) and B-2,q(s)(Rn+m) are not isomorphic when 1 < q not equal 2 < infinity. (c) 2007 Elsevier Inc. All rights reserved.The author is partially supported by DGES, Spain, Project MTM2005-08350.Motos Izquierdo, J.; Planells Gilabert, MJ.; Talavera Usano, CF. (2008). On some iterated weighted spaces. Journal of Mathematical Analysis and Applications. 338(1):162-174. https://doi.org/10.1016/j.jmaa.2007.05.009S162174338

    Characterization of chemical bonding in low-k dielectric materialsfor interconnect isolation: a xas and eels study

    Get PDF
    The use of low dielectric constant materials in the on-chipinterconnect process reduces interconnect delay, power dissipation andcrosstalk noise. To achieve the requirements of the ITRS for 2007-2009minimal sidewall damage from etch, ash or cleans is required. In chemicalvapor deposited (CVD) organo-silicate glass (OSG) which are used asintermetal dielectric (IMD) materials the substitution of oxygen in SiO2by methyl groups (-CH3) reduces the permittivity significantly (from 4.0in SiO2 to 2.6-3.3 in the OSG), since the electronic polarizability islower for Si-C bonds than for Si-O bonds. However, plasma processing forresist stripping, trench etching and post-etch cleaning removes C and Hcontaining molecular groups from the near-surface layer of OSG.Therefore, compositional analysis and chemical bonding characterizationof structured IMD films with nanometer resolution is necessary forprocess optimization. OSG thin films as-deposited and after plasmatreatment are studied using X-ray absorption spectroscopy (XAS) andelectron energy loss spectroscopy (EELS). In both techniques, the finestructure near the C1s absorption or energy loss edge, respectively,allows to identify C-H, C-C, and C-O bonds. This gives the opportunity todifferentiate between individual low-k materials and their modifications.The O1s signal is less selective to individual bonds. XAS spectra havebeen recorded for non-patterned films and EELS spectra for patternedstructures. The chemical bonding is compared for as-deposited andplasma-treated low-k materials. The Fluorescence Yield (FY) and the TotalElectron Yield (TEY) recorded while XAS measurement are compared.Examination of the C 1s near-edge structures reveal a modified bonding ofthe remaining C atoms in the plasma-treated sample regions

    Nanosized superparamagnetic precipitates in cobalt-doped ZnO

    Full text link
    The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are often tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.Comment: 20 pages, 6 figures; details about background subtraction added to section III. (XMCD

    The Bacteroidetes Aequorivita sp. and Kaistella jeonii Produce Promiscuous Esterases With PET-Hydrolyzing Activity

    Get PDF
    Certain members of the Actinobacteria and Proteobacteria are known to degrade polyethylene terephthalate (PET). Here, we describe the first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific Hidden-Markov-Model- (HMM-) based search algorithm, we identified several PETase candidates from Flavobacteriaceae and Porphyromonadaceae. Among them, two promiscuous and cold-active esterases derived from Aequorivita sp. (PET27) and Kaistella jeonii (PET30) showed depolymerizing activity on polycaprolactone (PCL), amorphous PET foil and on the polyester polyurethane Impranil® DLN. PET27 is a 37.8 kDa enzyme that released an average of 174.4 nmol terephthalic acid (TPA) after 120 h at 30°C from a 7 mg PET foil platelet in a 200 μl reaction volume, 38-times more than PET30 (37.4 kDa) released under the same conditions. The crystal structure of PET30 without its C-terminal Por-domain (PET30ΔPorC) was solved at 2.1 Å and displays high structural similarity to the IsPETase. PET30 shows a Phe-Met-Tyr substrate binding motif, which seems to be a unique feature, as IsPETase, LCC and PET2 all contain Tyr-Met-Trp binding residues, while PET27 possesses a Phe-Met-Trp motif that is identical to Cut190. Microscopic analyses showed that K. jeonii cells are indeed able to bind on and colonize PET surfaces after a few days of incubation. Homologs of PET27 and PET30 were detected in metagenomes, predominantly aquatic habitats, encompassing a wide range of different global climate zones and suggesting a hitherto unknown influence of this bacterial phylum on man-made polymer degradation

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    Mixture Risk Assessment of Complex Real-Life Mixtures—The PANORAMIX Project

    Get PDF
    Humans are involuntarily exposed to hundreds of chemicals that either contaminate our environment and food or are added intentionally to our daily products. These complex mixtures of chemicals may pose a risk to human health. One of the goals of the European Union’s Green Deal and zero-pollution ambition for a toxic-free environment is to tackle the existent gaps in chemical mixture risk assessment by providing scientific grounds that support the implementation of adequate regulatory measures within the EU. We suggest dealing with this challenge by: (1) characterising ‘real-life’ chemical mixtures and determining to what extent they are transferred from the environment to humans via food and water, and from the mother to the foetus; (2) establishing a high-throughput whole-mixture-based in vitro strategy for screening of real-life complex mixtures of organic chemicals extracted from humans using integrated chemical profiling (suspect screening) together with effect-directed analysis; (3) evaluating which human blood levels of chemical mixtures might be of concern for children’s development; and (4) developing a web-based, ready-to-use interface that integrates hazard and exposure data to enable component-based mixture risk estimation. These concepts form the basis of the Green Deal project PANORAMIX, whose ultimate goal is to progress mixture risk assessment of chemicals.Horizon 2020 research and innovation programme, the Green Deal project PANORAMIX Grant Agreement No. 10103663

    Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium

    Get PDF
    Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model.Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density.Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium

    Generation of Novel Bone Forming Cells (Monoosteophils) from the Cathelicidin-Derived Peptide LL-37 Treated Monocytes

    Get PDF
    Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair.Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK).Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis
    corecore