

Available online at www.sciencedirect.com

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 338 (2008) 162-174

www.elsevier.com/locate/jmaa

On some iterated weighted spaces

Joaquín Motos^{*,1}, María Jesús Planells, César F. Talavera

Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Valencia, Spain

Received 16 March 2007 Available online 13 May 2007 Submitted by Steven G. Krantz

Abstract

It is proved that the Hörmander $B_{p,k}^{\text{loc}}(\Omega_1 \times \Omega_2)$ and $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2))$ spaces $(\Omega_1 \subset \mathbb{R}^n, \Omega_2 \subset \mathbb{R}^m$ open sets, $1 \leq p < \infty$, k_i Beurling–Björck weights, $k = k_1 \otimes k_2$) are isomorphic whereas the iterated spaces $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{q,k_2}^{\text{loc}}(\Omega_2))$ and $B_{q,k_2}^{\text{loc}}(\Omega_2, B_{p,k_1}^{\text{loc}}(\Omega_1))$ are not if $1 . A similar result for weighted <math>L_p$ -spaces of entire analytic functions is also obtained. Finally a result on iterated Besov spaces is given: $B_{2,q}^s(\mathbb{R}^n, B_{2,q}^s(\mathbb{R}^m))$ and $B_{2,q}^s(\mathbb{R}^{n+m})$ are not isomorphic when $1 < q \neq 2 < \infty$.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Beurling ultradistributions; Weighted Lp-spaces of entire analytic functions; Hörmander spaces; Besov spaces

1. Introduction and notation

Many iterated spaces of functions or distributions are isomorphic to scalar spaces of the same kind; e.g., $L_p(\mu, L_p(\nu))$ and $L_p(\mu \otimes \nu)$ $(1 \leq p < \infty, \mu, \nu \sigma$ -finite measures), $H_p(\mathbb{D}, H_p(\mathbb{D}))$ and $H_p(\mathbb{D}^2)$ $(1 \leq p < \infty, \mathbb{D})$ unit disc), $W_p^s(\mathbb{R}^n, W_p^s(\mathbb{R}^m))$ and $W_p^s(\mathbb{R}^{n+m})$ $(1 or <math>D'(\Omega_1, D'(\Omega_2))$ and $D'(\Omega_1 \times \Omega_2)$ $(\Omega_1 \subset \mathbb{R}^n, \Omega_2 \subset \mathbb{R}^m$ open sets) are isomorphic. On the contrary, $L_\infty(\mathbb{R}^n, L_\infty(\mathbb{R}^m))$ and $L_\infty(\mathbb{R}^{n+m})$, BMO(\mathbb{T} , BMO(\mathbb{T})) and BMO(\mathbb{T}^2) or $D(\Omega_1, D(\Omega_2))$ and $D(\Omega_1 \times \Omega_2)$ are never isomorphic (see, e.g., [4,6] and [7,12] and [5], respectively). In this paper we extend slightly the kernel theorem for Beurling ultradistributions (see [18, Theorem 2.3]) and as a consequence we obtain results of the former kind for Hörmander $B_{p,k}$ and $B_{p,k}^{\text{loc}}(\Omega)$ spaces in the sense of Beurling–Björck [3] (these spaces play a crucial role in the theory of linear partial differential operators, see, e.g., [3,14] and [16]), for weighted L_p -spaces of entire analytic functions $L_{p,\rho}^K$ (these spaces are the building blocks of the corresponding Besov spaces, see [27,30,32] and [24]) and for Besov spaces $B_{p,q}^s$.

The organization of the paper is as follows. Section 2 contains some basic facts about scalar and vector-valued Beurling ultradistributions and the definitions of the spaces which are considered in the paper. In Section 3 we show that $D'_{\omega}(\Omega_1 \times \Omega_2)$ is canonically isomorphic to $L_b(D_{\omega_1}(\Omega_1), D'_{\omega_2}(\Omega_2))$ for some weights ω_1, ω_2 and ω

* Corresponding author.

0022-247X/\$ – see front matter $\,$ © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.05.009

E-mail address: jmotos@mat.upv.es (J. Motos).

¹ The author is partially supported by DGES, Spain, Project MTM2005-08350.

(see Theorem 3.2). In Section 4 we prove that the restriction of the previous canonical isomorphism to Hörmander-Beurling local space $B_{p,k}^{\text{loc}}(\Omega_1 \times \Omega_2)$ is an isomorphism of this space onto the iterated space $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2))$ (Theorem 4.5) and that the iterated spaces $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{q,k_2}^{\text{loc}}(\Omega_2))$ and $B_{q,k_2}^{\text{loc}}(\Omega_2, B_{p,k_1}^{\text{loc}}(\Omega_1))$ are not isomorphic if $1 (Theorem 4.9). We also propose the following question: For which weights <math>k_1, k_2$ and $q \in]1, \infty]$ the iterated spaces $B_{1,k_1}^{\text{loc}}(\mathbb{R}^n, B_{q,k_2}^{\text{loc}}(\mathbb{R}^m))$ and $B_{q,k_2}^{\text{loc}}(\mathbb{R}^n)$ are not isomorphic? Are the Banach spaces $l_1(l_{\infty})$ and $l_{\infty}(l_1)$ not isomorphic? In the last section we present a similar result to Theorem 4.5 for weighted L_p -spaces of entire analytic functions. We also give a result on iterated Besov spaces: $B_{2,q}^s(\mathbb{R}^n, B_{2,q}^s(\mathbb{R}^m))$ and $B_{2,q}^s(\mathbb{R}^{n+m})$ are not isomorphic when $-\infty < s < \infty$ and $1 < q \neq 2 < \infty$.

Notation. The linear spaces we use are defined over \mathbb{C} . Let *E* and *F* be locally convex spaces. Then $L_b(E, F)$ is the locally convex space of all continuous linear operators equipped with the bounded convergence topology. The dual of *E* is denoted by *E'* and is given the strong topology so that $E' = L_b(E, \mathbb{C})$. $E^{\mathbb{N}}$ is the topological product of a countable number of copies of *E*. $\mathcal{B}_b(E, F)$ is the locally convex space of all continuous bilinear forms on $E \times F$ equipped with the bibounded topology. If *E* or *F* is sequentially complete, $\mathcal{B}_b^s(E, F)$ denotes the locally convex space of all separately continuous bilinear forms on $E \times F$ with the bibounded topology (see, e.g., [19, p. 167]). $E \otimes_{\varepsilon} F$ (respectively $E \otimes_{\pi} F$) is the completion of the injective (respectively projective) tensor product of *E* and *F*. If *E* and *F* are (topologically) isomorphic we put $E \simeq F$. If *E* is isomorphic to a complemented subspace of *F* we write E < F. We put $E \hookrightarrow F$ if *E* is a linear subspace of *F* and the canonical injection is continuous (we replace \hookrightarrow by $\stackrel{d}{\hookrightarrow}$ if *E* is also dense in *F*). If $(E_n)_{n=1}^{\infty}$ is a sequence of locally convex spaces, $\bigoplus_{n=1}^{\infty} E_n (E^{(\mathbb{N})})$ if $E_n = E$ for all *n*) is the locally convex direct sum of the spaces E_n . The Fréchet space defined by the projective sequence of Banach spaces E_n and linking maps A_n

$$\cdots \to E_{n+1} \xrightarrow{A_n} E_n \to \cdots \xrightarrow{A_2} E_2 \xrightarrow{A_1} E_1$$

will be denoted by $\operatorname{proj}(E_n, A_n)$.

Let 0 a Lebesgue measurable function, and <math>E a Fréchet space. Then $L_p(E)$ is the set of all (equivalence classes of) Bochner measurable functions $f : \mathbb{R}^n \to E$ for which $||f||_p = (\int_{\mathbb{R}^n} ||f(x)||^p dx)^{1/p}$ is finite (with the usual modification when $p = \infty$) for all $|| \cdot || \in cs(E)$ (see, e.g., [11]). $L_{p,k}(E)$ denotes the set of all Bochner measurable functions $f : \mathbb{R}^n \to E$ such that $kf \in L_p(E)$. Putting $||f||_{L_{p,k}(E)} = ||f||_{p,k} = ||kf||_p$ for all $f \in L_{p,k}(E)$ and for all $|| \cdot || \in cs(E), L_{p,k}(E)$ becomes a Fréchet space isomorphic to $L_p(E)$ if $p \ge 1$. If $E = proj(E_i, A_i)$ and $p \ge 1$, then $L_{p,k}(E)$ is isomorphic to $proj(L_{p,k}(E_i), \overline{A_i})$ via the operator $f \to (P_i \circ f)_{i=1}^{\infty} (P_i \text{ is}$ the *i*th canonical projection from E into E_i and $\overline{A_i} : L_{p,k}(E_{i+1}) \to L_{p,k}(E_i) : g \to A_i \circ g$). When E is the field \mathbb{C} , we simply write L_p and $L_{p,k}$. If $f \in L_1(E)$ the Fourier transform of f, \hat{f} or $\mathcal{F}f$, is defined by $\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-i\xi x} dx$. If f is a function on \mathbb{R}^n , then $\tilde{f}(x) = f(-x), (\tau_h f)(x) = f(x-h)$ for $x, h \in \mathbb{R}^n$, and B_b is the closed ball $\{x: |x| \le b\}$ in \mathbb{R}^n . The letter C will always denote a positive constant, not necessarily the same at each occurrence.

Finally we recall the definition of A_p^* functions. A positive, locally integrable function ω on \mathbb{R}^n is in A_p^* provided, for 1 ,

$$\sup_{R} \left(\frac{1}{|R|} \int_{R} \omega \, dx \right) \left(\frac{1}{|R|} \int_{R} \omega^{-p'/p} \, dx \right)^{p/p'} < \infty,$$

where *R* runs over all bounded *n*-dimensional intervals. The basic properties of these functions can be found in [10, Chapter IV].

2. Spaces of vector-valued (Beurling) ultradistributions

In this section we collect some basic facts about vector-valued (Beurling) ultradistributions and we recall the definitions of the vector-valued Hörmander–Beurling spaces and the weighted L_p -spaces of vector-valued entire analytic functions. Comprehensive treatments of the theory of (scalar or vector-valued) ultradistributions can be found in [3, 13,17,18] and [19]. Our notations are based on [3] and [27, pp. 14–19].

Let \mathcal{M}_n be the set of all functions ω on \mathbb{R}^n such that $\omega(x) = \sigma(|x|)$ where $\sigma(t)$ is an increasing continuous concave function on $[0, \infty[$ with the following properties:

(i) $\sigma(0) = 0$,

- (ii) $\int_0^\infty \frac{\sigma(t)}{1+t^2} dt < \infty$ (Beurling's condition),
- (iii) there exist a real number a and a positive number b such that

$$\sigma(t) \ge a + b \log(1+t)$$
 for all $t \ge 0$.

The assumption (ii) is essentially the Denjoy–Carleman non-quasianalyticity condition (see [3, Section 1.5]). The two most prominent examples of functions $\omega \in \mathcal{M}_n$ are given by $\omega(x) = \log(1 + |x|)^d$, d > 0, and $\omega(x) = |x|^{\beta}$, $0 < \beta < 1$.

If $\omega \in \mathcal{M}_n$ and E is a Fréchet space, we denote by $D_{\omega}(E)$ the set of all functions $f \in L_1(E)$ with compact support, such that $||f||_{\lambda} = \int_{\mathbb{R}^n} ||\hat{f}(\xi)|| e^{\lambda \omega(\xi)} d\xi < \infty$ for all $\lambda > 0$ and for all $||\cdot|| \in cs(E)$. For each compact subset K of \mathbb{R}^n , $D_{\omega}(K, E) = \{f \in D_{\omega}(E): \text{ supp } f \subset K\}$, equipped with the topology induced by the family of seminorms $\{\|\cdot\|_{\lambda}: \|\cdot\| \in cs(E), \lambda > 0\}$, is a Fréchet space and $D_{\omega}(E) = ind_{\rightarrow} D_{\omega}(K, E)$ becomes a strict (LF)-space. If Ω is any open set in \mathbb{R}^n , $D_{\omega}(\Omega, E)$ is the subspace of $D_{\omega}(E)$ consisting of all functions f with supp $f \subset \Omega$. $D_{\omega}(\Omega, E)$ is endowed with the corresponding inductive limit topology: $D_{\omega}(\Omega, E) = \operatorname{ind}_{K \subseteq \Omega} D_{\omega}(K, E)$. Let $S_{\omega}(E)$ be the set of all functions $f \in L_1(E)$ such that both f and \hat{f} are infinitely differentiable functions on \mathbb{R}^n with $\sup_{x \in \mathbb{R}^n} e^{\lambda \omega(x)} \|\partial^{\alpha} f(x)\| < \infty$ and $\sup_{x \in \mathbb{R}^n} e^{\lambda \omega(x)} \|\partial^{\alpha} \hat{f}(x)\| < \infty$ for all multi-indices α , all positive numbers λ and all $\|\cdot\| \in cs(E)$. $S_{\omega}(E)$ with the topology induced by the above family of seminorms is a Fréchet space and the Fourier transformation \mathcal{F} is an automorphism of $S_{\omega}(E)$. If $E = \mathbb{C}$, then $D_{\omega}(E)$ and $S_{\omega}(E)$ coincide with the spaces D_{ω} and S_{ω} (see [3]). Let us recall that, by Beurling's condition, the space D_{ω} is non-trivial and the usual procedure of the resolution of unity can be established with D_{ω} -functions (see [3, Theorem 1.3.7]). Furthermore, $D_{\omega} \stackrel{d}{\hookrightarrow} D$ (see [3, Theorem 1.3.18]) and D_{ω} is nuclear [34, Corollary 7.5]. On the other hand, $D_{\omega} = D \cap S_{\omega}, D_{\omega} \stackrel{d}{\hookrightarrow} S_{\omega} \stackrel{d}{\hookrightarrow} S$ (see [3, Proposition 1.8.6, Theorem 1.8.7]) and S_{ω} is nuclear (see [13, p. 320]). If \mathcal{E}_{ω} is the set of multipliers on D_{ω} , i.e., the set of all functions $f : \mathbb{R}^n \to \mathbb{C}$ such that $\varphi f \in D_\omega$ for all $\varphi \in D_\omega$, then \mathcal{E}_ω with the topology generated by the seminorms $\{f \to \|\varphi f\|_{\lambda} = \int_{\mathbb{R}^n} |\widehat{\varphi f}(\xi)| e^{\lambda \omega(\xi)} d\xi$: $\lambda > 0, \ \varphi \in D_{\omega}\}$ becomes a nuclear Fréchet space (see [34, Corollary 7.5]) and $D_{\omega} \stackrel{d}{\hookrightarrow} \mathcal{E}_{\omega}$. Using the above results and [19, Theorem 1.12] we can identify $S_{\omega}(E)$ with $S_{\omega} \hat{\otimes}_{\varepsilon} E$. However, though $D_{\omega} \otimes E$ is dense in $D_{\omega}(E)$, in general $D_{\omega}(E)$ is not isomorphic to $D_{\omega} \otimes_{\varepsilon} E$ (cf., e.g., [12, Chapter II, p. 83]). A continuous linear operator from D_{ω} into E is said to be a (Beurling) ultradistribution with values in E. We write $D'_{\omega}(E)$ for the space of all E-valued (Beurling) ultradistributions endowed with the bounded convergence topology, thus $D'_{\omega}(E) = L_b(D_{\omega}, E)$. $D'_{\omega}(\Omega, E) = L_b(D_{\omega}(\Omega), E)$ is the space of all (Beurling) ultradistributions on Ω with values in E. A continuous linear operator from S_{ω} into E is said to be an E-valued tempered ultradistribution. $S'_{\omega}(E)$ is the space of all E-valued tempered ultradistributions equipped with the bounded convergence topology, i.e., $S'_{\omega}(E) = L_b(S_{\omega}, E)$. The Fourier transformation \mathcal{F} is an automorphism of $S'_{\omega}(E)$. If $\omega \in \mathcal{M}_n$, then \mathcal{K}_{ω} is the set of all positive functions k on \mathbb{R}^n for which there exists a positive constant N such

that $k(x+y) \leq e^{N\omega(x)}k(y)$ for all x and y in \mathbb{R}^n [3, Definition 2.1.1] (when $\omega(x) = \log(1+|x|)$ the functions k of the corresponding class \mathcal{K}_{ω} are called temperate weight functions, see [14, Definition 10.1.1]). If $k, k_1, k_2 \in \mathcal{K}_{\omega}$ and s is a real number, then log k is uniformly continuous, $k^s \in \mathcal{K}_{\omega}$, $k_1 k_2 \in \mathcal{K}_{\omega}$ and $M_k(x) = \sup_{y \in \mathbb{R}^n} \frac{k(x+y)}{k(y)} \in \mathcal{K}_{\omega}$ (see [3, Theorem 2.1.3]). If $u \in L_1^{\text{loc}}$ and $\int_{\mathbb{R}^n} \varphi(x) u(x) dx = 0$ for all $\varphi \in D_{\omega}$, then u = 0 a.e. (see [3]). This result, the Hahn–Banach theorem and [9, Chapter II, Corollary 7] prove that if $k \in \mathcal{K}_{\omega}$, $p \in [1, \infty]$ and E is a Fréchet space, we can identify $f \in L_{p,k}(E)$ with the *E*-valued tempered ultradistribution $\varphi \to \langle \varphi, f \rangle = \int_{\mathbb{R}^n} \varphi(x) f(x) dx, \varphi \in S_\omega$, and $L_{p,k}(E) \hookrightarrow$ $S'_{\omega}(E)$. If $\omega \in \mathcal{M}_n$, $k \in \mathcal{K}_{\omega}$, $p \in [1, \infty]$ and E is a Fréchet space, we denote by $B_{p,k}(E)$ the set of all E-valued tempered ultradistributions T for which there exists a function $f \in L_{p,k}(E)$ such that $\langle \varphi, \widehat{T} \rangle = \int_{\mathbb{R}^n} \varphi(x) f(x) dx$, $\varphi \in S_{\omega}$. $B_{p,k}(E)$ with the seminorms $\{\|T\|_{p,k} = ((2\pi)^{-n} \int_{\mathbb{R}^n} \|k(x)\widehat{T}(x)\|^p dx)^{1/p}$: $\|\cdot\| \in cs(E)\}$ (usual modification if $p = \infty$), becomes a Fréchet space isomorphic to $L_{p,k}(E)$. Spaces $B_{p,k}(E)$ are called Hörmander–Beurling spaces with values in E (see [3,14,16] for the scalar case and [24,25,33] for the vector-valued case). We denote by $B_{p,k}^{\text{loc}}(\Omega, E)$ (see [3,14,34] and [23,25,33]) the space of all *E*-valued ultradistributions $T \in D'_{\omega}(\Omega, E)$ such that, for every $\varphi \in D_{\omega}(\Omega)$, the map $\varphi T : S_{\omega} \to E$ defined by $\langle u, \varphi T \rangle = \langle u\varphi, T \rangle$, $u \in S_{\omega}$, belongs to $B_{p,k}(E)$. The space $B_{p,k}^{\text{loc}}(\Omega, E)$ is a Fréchet space with the topology generated by the seminorms $\{\|\cdot\|_{p,k,\varphi}: \varphi \in D_{\omega}(\Omega), \|\cdot\| \in cs(E)\},\$ where $||T||_{p,k,\varphi} = ||\varphi T||_{p,k}$ for $T \in B_{p,k}^{\text{loc}}(\Omega, E)$. We shall also use the spaces $B_{p,k}^{c}(\Omega, E)$ which generalize the scalar spaces $B_{p,k}^c(\Omega)$ considered by Hörmander in [14], by Vogt in [34] and by Björck in [3]. If ω, k, p, Ω and E are as

above, then $B_{p,k}^c(\Omega, E) = \bigcup_{j=1}^{\infty} [B_{p,k}(E) \cap \overline{\mathcal{E}}'_{\omega}(K_j, E)]$ (here (K_j) is any fundamental sequence of compact subsets of Ω and $\overline{\mathcal{E}}'_{\omega}(K_j, E)$ denotes the set of all $T \in D'_{\omega}(E)$ such that $\operatorname{supp} T \subset K_j$). Since for every compact $K \subset \Omega$, $B_{p,k}(E) \cap \overline{\mathcal{E}}'_{\omega}(K, E)$ is a Fréchet space with the topology induced by $B_{p,k}(E)$, it follows that $B_{p,k}^c(\Omega, E)$ becomes a strict (LF)-space: $B_{p,k}^c(\Omega, E) = \operatorname{ind}_{\rightarrow j} [B_{p,k}(E) \cap \overline{\mathcal{E}}'_{\omega}(K_j, E)]$. These spaces are studied in [23] and [25].

We conclude this section with the definition of the weighted L_p -spaces of *E*-valued entire analytic functions $L_{p,\rho}^K(E)$. First we state the vector-valued version of the Paley–Wiener–Schwartz theorem that we shall need (see [3, Theorem 1.8.14], [18, Theorem 1.1] and [27, pp. 18–19] for the scalar case): "Let $\omega \in \mathcal{M}_n$ and let *E* be a Banach space. If $T \in S'_{\omega}(E)$ and $\operatorname{supp} \widehat{T} \subset B_b$, then there exist an *E*-valued entire analytic function $U(\zeta)$ and a real number λ such that for any $\varepsilon > 0$,

$$\left\| U(\xi + i\eta) \right\| \leqslant C_{\varepsilon} e^{(b+\varepsilon)|\eta| + \lambda \omega(\xi)}$$

holds for all $\zeta = \xi + i\eta \in \mathbb{C}^n$ where C_{ε} depends on ε but not on ζ ($U(\zeta)$ is called an *E*-valued entire function of exponential type) and such that *U* represents to *T*, i.e., such that $\langle \varphi, T \rangle = \int_{\mathbb{R}^n} \varphi(x)U(x) dx$ for all $\varphi \in S_{\omega}$." Next we recall the definition of $R(\omega)$ given in [30, Definition 1.3.1]. If $\omega \in \mathcal{M}_n$, then $R(\omega)$ denotes the collection of all Borel-measurable real functions $\rho(x)$ on \mathbb{R}^n such that there exists a positive constant *c* with $0 < \rho(x) \leq c e^{\omega(x-y)}\rho(y)$ for all $x, y \in \mathbb{R}^n$. If $\rho \in R(\omega)$, $p \in [1, \infty]$ and *E* is a Banach space, we have the canonical embeddings $S_{\omega}(E) \hookrightarrow L_{p,\rho}(E) \hookrightarrow S'_{\omega}(E)$. Finally, we give the definition of the spaces $L_{p,\rho}^K(E)$. Let $\omega \in \mathcal{M}_n$, $\rho \in R(\omega)$, $p \in [1, \infty]$, *K* a compact set in \mathbb{R}^n and *E* a Banach space, then

$$L_{p,\rho}^{K}(E) = \left\{ f \mid f \in S'_{\omega}(E), \text{ supp } \hat{f} \subset K, \|f\|_{L_{p,\rho}^{K}(E)} = \|f\|_{p,\rho} < \infty \right\}.$$

With the norm $\|\cdot\|_{p,\rho}$, $L_{p,\rho}^{K}(E)$ becomes a Banach space. We shall write $L_{p,\rho}^{K}$ when $E = \mathbb{C}$. If $\rho(x) = 1$, then we put $L_{p,1}^{K}(E) = L_{p}^{K}(E)$. If there is a possibility of confusion, the notation $L_{p,\rho}^{K}(\mathbb{R}^{n}, E)$, $L_{p,\rho}^{K}(\mathbb{R}^{n})$, $L_{p}^{K}(\mathbb{R}^{n}, E)$ will be used. We shall denote by S_{ω}^{K} the collection of all $\varphi \in S_{\omega}$ such that $\operatorname{supp} \hat{\varphi} \subset K$. The spaces $L_{p,\rho}^{K}(E)$ are studied in [27,30,32] and [24].

3. On the kernel theorem for ultradistributions

In this section we shall show that if $\omega_1 \in \mathcal{M}_n$, $\omega_2 \in \mathcal{M}_m$ and $\omega \in \mathcal{M}_{n+m}$ satisfy the condition

$$\frac{1}{c} \left[\omega_1(x) + \omega_2(y) \right] \leqslant \omega(x, y) \leqslant c \left[\omega_1(x) + \omega_2(y) \right], \quad (x, y) \in \mathbb{R}^{m+n}$$
(3.1)

(*c* is a constant > 0) and Ω_1 (respectively Ω_2) is an open set in \mathbb{R}^n (respectively \mathbb{R}^m), then

$$L_b(D_{\omega_1}(\Omega_1), D'_{\omega_2}(\Omega_2)) \simeq D'_{\omega}(\Omega_1 \times \Omega_2).$$

This result extends slightly the kernel theorem for ultradistributions (see, e.g., [18, Theorem 2.3]) and will be used in the next sections.

Let us now recall that a bounded open Ω in \mathbb{R}^n has the segment property if there exist open balls V_j and vectors $y^j \in \mathbb{R}^n \setminus \{0\}, j = 1, ..., N$, such that $\overline{\Omega} \subset \bigcup_{j=1}^N V_j$ and $(\overline{\Omega} \cap V_j) + ty^j \subset \Omega$ for 0 < t < 1 and j = 1, ..., N. For instance, if Ω is convex or if $\partial \Omega \in C^{0,1}$, then Ω has the segment property. We say that a compact set K in \mathbb{R}^n is regular if $K = \overline{K}$ and \overline{K} has the segment property (in [18, p. 614] compact regular is said compact with the cone property).

The following lemma is known (see, e.g., [17, pp. 73–75] and [3, Corollary 1.5.15, Theorem 1.5.16]).

Lemma 3.1. If $\omega \in \mathcal{M}_n$, the set \mathcal{P}_n of all polynomials in \mathbb{R}^n is dense in \mathcal{E}_{ω} .

Theorem 3.2. Suppose that $\omega_1 \in \mathcal{M}_n$, $\omega_2 \in \mathcal{M}_m$ and $\omega \in \mathcal{M}_{n+m}$ satisfy the condition (3.1), that Ω_1 (respectively Ω_2) is an open set in \mathbb{R}^n (respectively \mathbb{R}^m), and that K_1 (respectively K_2) is a regular compact in \mathbb{R}^n (respectively \mathbb{R}^m). Then

(1) $D_{\omega_1}(\Omega_1) \otimes D_{\omega_2}(\Omega_2)$ is sequentially dense in $D_{\omega}(\Omega_1 \times \Omega_2)$.

- (2) $D_{\omega_1}(K_1) \otimes_{\varepsilon} D_{\omega_2}(K_2)$ is canonically isomorphic to $D_{\omega}(K_1 \times K_2)$.
- (3) $D'_{\omega}(\Omega_1 \times \Omega_2)$ is canonically isomorphic to $L_b(D_{\omega_1}(\Omega_1), D'_{\omega_2}(\Omega_2))$.

Proof. We are going to adapt to our context the proof given by Komatsu in [18, pp. 614–619] of the kernel theorem for ultradistributions.

(1) From (3.1) it follows that $D_{\omega_1}(\Omega_1) \otimes D_{\omega_2}(\Omega_2)$ is a linear subspace of $D_{\omega}(\Omega_1 \times \Omega_2)$. Let then $\phi \in D_{\omega}(\Omega_1 \times \Omega_2)$ and put $L = \operatorname{supp} \phi$, $L_1 = \operatorname{proj}_{\Omega_1} L$ and $L_2 = \operatorname{proj}_{\Omega_2} L$. By [3, Theorem 1.3.7] we can find functions $\varphi \in D_{\omega_1}(\Omega_1)$, $\psi \in D_{\omega_2}(\Omega_2)$ such that $\varphi \equiv 1$ in a neighborhood of L_1 and $\psi \equiv 1$ in a neighborhood of L_2 . Then $\varphi \otimes \psi \in D_{\omega_1}(\Omega_1) \otimes D_{\omega_2}(\Omega_2)$ and $\varphi \otimes \psi \equiv 1$ in a neighborhood of L. Now we choose using Lemma 3.1 a sequence $P_k \in \mathcal{P}_{n+m}$ with $P_k \to \phi$ in \mathcal{E}_{ω} . Then the functions $(\varphi \otimes \psi) P_k$ are in $D_{\omega_1}(\Omega_1) \otimes D_{\omega_2}(\Omega_2)$ and $(\varphi \otimes \psi) P_k \to (\varphi \otimes \psi) \phi = \phi$ in $D_{\omega}(\Omega_1 \times \Omega_2)$. Thus (1) is proved.

(2) Let us denote by $D_{\omega_1}(K_1) \otimes_{\omega} D_{\omega_2}(K_2)$ the space $D_{\omega_1}(K_1) \otimes D_{\omega_2}(K_2)$ equipped with the topology induced by $D_{\omega}(K_1 \times K_2)$. From (3.1) it follows that the identity $D_{\omega_1}(K_1) \otimes_{\pi} D_{\omega_2}(K_2) \rightarrow D_{\omega_1}(K_1) \otimes_{\omega} D_{\omega_2}(K_2)$ is continuous. Let us see that the identity of $D_{\omega_1}(K_1) \otimes_{\omega} D_{\omega_2}(K_2)$ into $D_{\omega_1}(K_1) \otimes_{\varepsilon} D_{\omega_2}(K_2)$ is also continuous: Let $\lambda_1, \lambda_2 > 0$. Let U (respectively V) be the unit ball in $D_{\omega_1}(K_1)$ (respectively $D_{\omega_2}(K_2)$) corresponding to the norm $\|\cdot\|_{\lambda_1}^{(\omega_1)}$ (respectively $\|\cdot\|_{\lambda_2}^{(\omega_2)}$). Then, by using the theorem of bipolars (cf., e.g., [15, p. 149]), we have $\|\varphi\|_{\lambda_1}^{(\omega_1)} = \sup_{u \in U^{\circ}} |\langle \varphi, u \rangle|$ for all $\varphi \in D_{\omega_1}(K_1)$ and $\|\psi\|_{\lambda_2}^{(\omega_2)} = \sup_{v \in V^{\circ}} |\langle \psi, v \rangle|$ for all $\psi \in D_{\omega_2}(K_2)$. Therefore, if $\sum_{j=1}^m \varphi_j \otimes \psi_j \in D_{\omega_1}(K_1) \otimes D_{\omega_2}(K_2), u \in U^{\circ}$ and $v \in V^{\circ}$, we get by using (3.1) and the Fubini's theorem

$$\begin{split} \left|\sum_{j} \langle \varphi_{j}, u \rangle \langle \psi_{j}, v \rangle \right| &= \left| \left\langle \sum_{j} \langle \varphi_{j}, u \rangle \psi_{j}, v \right\rangle \right| \leqslant \left\| \sum_{j} \langle \varphi_{j}, u \rangle \psi_{j} \right\|_{\lambda_{2}}^{(\omega_{2})} = \int_{\mathbb{R}^{m}} \left| \sum_{j} \langle \varphi_{j}, u \rangle \hat{\psi}_{j}(y) \left| e^{\lambda_{2}\omega_{2}(y)} dy \right| \\ &= \int_{\mathbb{R}^{m}} \left| \left\langle \sum_{j} \hat{\psi}_{j}(y) \varphi_{j}, u \right\rangle \right| e^{\lambda_{2}\omega_{2}(y)} dy \leqslant \int_{\mathbb{R}^{m}} \left\| \sum_{j} \hat{\psi}_{j}(y) \varphi_{j} \right\|_{\lambda_{1}}^{(\omega_{1})} e^{\lambda_{2}\omega_{2}(y)} dy \\ &\leqslant \int_{\mathbb{R}^{m}} \left(\int_{\mathbb{R}^{n}} \left| \sum_{j} \hat{\varphi}_{j}(x) \hat{\psi}_{j}(y) \right| e^{\lambda_{1}\omega_{1}(x)} dx \right) e^{\lambda_{2}\omega_{2}(y)} dy \\ &\leqslant \int_{\mathbb{R}^{n+m}} \left| \left(\sum_{j} \varphi_{j} \otimes \psi_{j} \right)^{\wedge} (x, y) \right| e^{c\lambda_{3}\omega(x, y)} dx dy \end{split}$$

where *c* is the constant of (3.1) and $\lambda_3 = \max(\lambda_1, \lambda_2)$. So

$$\sup_{(u,v)\in U^{\circ}\times V^{\circ}}\left|\sum_{j=1}^{m}\langle\varphi_{j},u\rangle\langle\psi_{j},v\rangle\right| \leqslant \left\|\sum_{j=1}^{m}\varphi_{j}\otimes\psi_{j}\right\|_{c\lambda_{2}^{\circ}}^{(\omega)}$$

which proves the required continuity. Since the ε -topology coincides with the π -topology on $D_{\omega_1}(K_1) \otimes D_{\omega_2}(K_2)$ (by the nuclearity of the spaces $D_{\omega_i}(K_i)$, see Vogt [34, Corollary 7.5]), we conclude that $D_{\omega_1}(K_1) \otimes E_{\omega_2}(K_2)$ is a topological linear subspace of $D_{\omega}(K_1 \times K_2)$. It remains to prove that this subspace coincides with $D_{\omega}(K_1 \times K_2)$. In order to show this, since $D_{\omega_1}(\mathring{K}_1) \otimes D_{\omega_2}(\mathring{K}_2)$ is dense in $D_{\omega}(\mathring{K}_1 \times \mathring{K}_2)$ (step (1)) and the canonical injection of $D_{\omega}(\mathring{K}_1 \times \mathring{K}_2)$ into $D_{\omega}(K_1 \times K_2)$ is continuous, it will be sufficient to prove that $D_{\omega}(\mathring{K}_1 \times \mathring{K}_2)$ is dense in $D_{\omega}(K_1 \times K_2)$. Let then $\phi \in D_{\omega}(K_1 \times K_2)$. Since $K_1 \times K_2$ is also a regular compact, there exist open balls V_j in \mathbb{R}^{n+m} and vectors $(x^j, y^j) \in \mathbb{R}^{n+m} \setminus \{0\}, j = 1, ..., N$, such that $K_1 \times K_2 \subset \bigcup_{j=1}^N V_j$ and $(K_1 \times K_2 \cap V_j) +$ $t(x^j, y^j) \subset \mathring{K}_1 \times \mathring{K}_2$ for 0 < t < 1 and j = 1, ..., N. Therefore, if $(\phi_j)_{j=1}^N$ is a D_{ω} -partition of unity at $K_1 \times K_2$ subordinate to the covering $\{V_1, ..., V_N\}$ (see [3, Theorem 1.3.7]), the functions $\tau_{t(x^j, y^j)}(\phi\phi_j)$ are in $D_{\omega}(\mathring{K}_1 \times \mathring{K}_2)$ and $\sum_{j=1}^N \tau_{t(x^j, y^j)}(\phi\phi_j) \to \sum_{j=1}^N \phi\phi_j = \phi$ in $D_{\omega}(K_1 \times K_2)$ when $t \to 0+$. This completes the proof of (2).

(3) Let $(K_j^1)_{j=1}^{\infty}$ (respectively $(K_j^2)_{j=1}^{\infty}$) be a fundamental sequence of regular compacts in Ω_1 (respectively Ω_2). Then $(K_j^1 \times K_j^2)_{j=1}^{\infty}$ is a fundamental sequence of regular compacts in $\Omega_1 \times \Omega_2$ and, by (2) and [28, Proposition 50.7], we have the canonical isomorphisms

$$\left(D_{\omega}\left(K_{j}^{1}\times K_{j}^{2}\right)\right)'\simeq\left(D_{\omega_{1}}\left(K_{j}^{1}\right)\hat{\otimes}_{\varepsilon} D_{\omega_{2}}\left(K_{j}^{2}\right)\right)'\simeq\mathcal{B}_{b}\left(D_{\omega_{1}}\left(K_{j}^{1}\right), D_{\omega_{2}}\left(K_{j}^{2}\right)\right).$$
(3.2)

Now we shall prove that the linear map

$$\iota: \quad D'_{\omega}(\Omega_1 \times \Omega_2) \to \mathcal{B}^s_b(D_{\omega_1}(\Omega_1), D_{\omega_2}(\Omega_2))$$
$$u \to \iota(u)(\varphi, \psi) = \langle \varphi \otimes \psi, u \rangle$$

(ι is well defined since the bilinear map $D_{\omega_1}(\Omega_1) \times D_{\omega_2}(\Omega_2) \to D_{\omega}(\Omega_1 \times \Omega_2) : (\varphi, \psi) \to \varphi \times \psi$ is separately continuous) is an isomorphism. That ι is one-to-one follows from (1). Now assume that $U \in \mathcal{B}^s(D_{\omega_1}(\Omega_1), D_{\omega_2}(\Omega_2))$. Then $U|_{D_{\omega_1}(K_j^1) \times D_{\omega_2}(K_j^2)} \in \mathcal{B}^s(D_{\omega_1}(K_j^1), D_{\omega_2}(K_j^2))$ and, since every separately continuous bilinear form in a product of Fréchet spaces is continuous [28, Corollary, p. 354], we can find (see (3.2)) $u_{K_j^1 \times K_j^2} \in (D_{\omega}(K_j^1 \times K_j^2))'$ such that $U(\varphi, \psi) = \langle \varphi \otimes \psi, u_{K_j^1 \times K_j^2} \rangle$ for all $\varphi \in D_{\omega_1}(K_j^1)$ and for all $\psi \in D_{\omega_2}(K_j^2)$. So we construct $u \in D'_{\omega}(\Omega_1 \times \Omega_2)$ such that $\iota(u) = U$, and ι is onto. If A (respectively B) is a bounded set in $D_{\omega_1}(\Omega_1)$ (respectively $D_{\omega_2}(\Omega_2)$), then, by [28, Proposition 14.6], there is a sufficiently large j such that A (respectively B) is contained and is bounded in $D_{\omega_1}(K_j^1)$ (respectively $D_{\omega_2}(K_j^2)$). Conversely, if M is bounded in $D_{\omega}(\Omega_1 \times \Omega_2)$ there exists $K_j^1 \times K_j^2$ [28, Proposition 14.6] such that M is contained and is bounded in $D_{\omega}(K_j^1 \times K_j^2)$. Since the spaces $D_{\omega_i}(K_j^i)$, i = 1, 2, are nuclear [34, Corollary 7.5], (2) and [12, Chapter II] prove that $M \subset \overline{\Gamma A \otimes B}$ being A (respectively B) a bounded set in $D_{\omega_1}(K_j^1)$ (respectively $D_{\omega_2}(K_j^2)$). It is an immediate consequence of these results that ι and ι^{-1} are continuous, that is, that ι is an isomorphism. Finally, we can argue exactly as in [18, p. 618] and obtain the canonical isomorphism $\mathcal{B}_{\delta}^{k}(D_{\omega_1}(\Omega_1), D_{\omega_2}(\Omega_2))$. \Box

Corollary 3.3. If $\omega_1 \in \mathcal{M}_n$, $\omega_2 \in \mathcal{M}_m$ and $\omega \in \mathcal{M}_{n+m}$ satisfy the condition (3.1), then $S_{\omega_1} \otimes S_{\omega_2}$ is dense in S_{ω} .

Proof. Since the canonical injection of D_{ω} into S_{ω} is continuous, it is enough to take into account that D_{ω} is dense in S_{ω} (see [3, Theorem 1.8.7]) and that $D_{\omega_1} \otimes D_{\omega_2}$ is dense in D_{ω} (step (1) of Theorem 3.2). \Box

4. Iterated Hörmander–Beurling local spaces

In this section we shall show that if Ω_1 (respectively Ω_2) is an open set in \mathbb{R}^n (respectively \mathbb{R}^m), ω_1 , ω_2 and ω are as in Section 3, $k_1 \in \mathcal{K}_{\omega_1}$, $k_2 \in \mathcal{K}_{\omega_2}$ $k = k_1 \otimes k_2$ and $1 \leq p < \infty$, then the restriction of the canonical isomorphism $D'_{\omega}(\Omega_1 \times \Omega_2) \simeq L_b(D_{\omega_1}(\Omega_1), D'_{\omega_2}(\Omega_2))$ (see Theorem 3.2) to Hörmander–Beurling local space $B^{\text{loc}}_{p,k}(\Omega_1 \times \Omega_2)$ is an isomorphism of this space onto the iterated space $B^{\text{loc}}_{p,k_1}(\Omega_1, B^{\text{loc}}_{p,k_2}(\Omega_2))$ and that the iterated spaces $B^{\text{loc}}_{p,k_1}(\Omega_1, B^{\text{loc}}_{q,k_2}(\Omega_2))$ and $B^{\text{loc}}_{q,k_2}(\Omega_2, B^{\text{loc}}_{p,k_1}(\Omega_1))$ are not isomorphic if 1 .

In what follows we shall denote by R the canonical isomorphism $D'_{\omega}(\Omega_1 \times \Omega_2) \to L_b(D_{\omega_1}(\Omega_1), D'_{\omega_2}(\Omega_2)) : u \to R(u)(\varphi)(\psi) = u(\varphi \otimes \psi)$ (Theorem 3.2). If $\Omega_1 = \mathbb{R}^n$ and $\Omega_2 = \mathbb{R}^m$, then we put R_1 instead of R. It is easily seen that the restriction of R_1 to S'_{ω} becomes a continuous operator from S'_{ω} to $L_b(S_{\omega_1}, S'_{\omega_2})$. If we denote by R_2 this restriction, we have the commutative diagram

where the vertical arrows are the canonical injections.

Lemma 4.1. Let ω_1 , ω_2 , ω , k_1 , k_2 , k and p as above. Then the Hörmander–Beurling space $B_{p,k}$ is isometrically isomorphic to the iterated space $B_{p,k_1}(B_{p,k_2})$ via the canonical isomorphism R_1 .

Proof. By (3.1), $k \in \mathcal{K}_{\omega}$. Now consider the diagram

$$B_{p,k} \xrightarrow{R_3} B_{p,k_1}(B_{p,k_2})$$

$$D \downarrow \qquad \qquad \uparrow A$$

$$L_{p,k} \xrightarrow{C} L_{p,k_1}(L_{p,k_2}) \xrightarrow{B} B_{p,k_1}(L_{p,k_2})$$

where D is $(2\pi)^{-(n+m)/p} \mathcal{F}(\mathcal{F})$ is the Fourier transform in S'_{ω} , C is defined by Cf(x)(y) = f(x, y), B is $(2\pi)^{n/p} \mathcal{F}^{-1}$ (here \mathcal{F} is the Fourier transform in $S'_{\omega_1}(L_{p,k_2})$), and A is defined by $A(T) = (2\pi)^{m/p} \mathcal{F}^{-1} \circ T$ (\mathcal{F} being the Fourier transform in S'_{ω_2}). Since all these operators are isometrical isomorphisms, their composition R_3 is also an isometrical isomorphism. It remains to prove that the diagram

is commutative (here the vertical arrows are the canonical injections). For this, since the canonical injections and R_2 and R_3 are continuous operators and $S_{\omega_1} \otimes S_{\omega_2}$ is dense in $B_{p,k}$ (in view of Corollary 3.3 and [3, Theorem 2.2.3]), it will be sufficient to show that $R_3(\varphi_0 \otimes \psi_0)(\varphi)(\psi) = R_2(\varphi_0 \otimes \psi_0)(\varphi)(\psi)$ for all $\varphi_0, \varphi \in S_{\omega_1}$ and for all $\psi_0, \psi \in S_{\omega_2}$,

$$R_{3}(\varphi_{0} \otimes \psi_{0})(\varphi)(\psi) = \left[\left(ABCD(\varphi_{0} \otimes \psi_{0}) \right)(\psi) \right](\psi)$$

$$= (2\pi)^{-(n+m)/p} \left[\left(ABC(\hat{\varphi}_{0} \otimes \hat{\psi}_{0}) \right)(\varphi) \right](\psi)$$

$$= (2\pi)^{-(n+m)/p} \left[\left(AB(\hat{\varphi}_{0}(\cdot)\hat{\psi}_{0}) \right)(\varphi) \right](\psi)$$

$$= \left[\left(\mathcal{F}^{-1} \circ \left(\mathcal{F}^{-1}(\hat{\varphi}_{0}(\cdot)\hat{\psi}_{0}) \right) \right)(\varphi) \right](\psi)$$

$$= \left[\mathcal{F}^{-1} \left(\left(\int_{\mathbb{R}^{n}} \mathcal{F}^{-1}\varphi(x)\hat{\varphi}_{0}(x)\hat{\psi}_{0} \, dx \right) \right](\psi)$$

$$= \left[\mathcal{F}^{-1} \left(\langle \varphi, \varphi_{0} \rangle \hat{\psi}_{0} \right) \right](\psi)$$

$$= \left[\langle \varphi, \varphi_{0} \rangle \psi_{0} \right](\psi)$$

$$= \langle \varphi, \varphi_{0} \rangle \langle \psi, \psi_{0} \rangle$$

$$= \langle \varphi \otimes \psi, \varphi_{0} \otimes \psi_{0} \rangle \langle \psi).$$

Thus the lemma is proved. \Box

Remark 4.2. In the case $p = \infty$, Lemma 4.1 is false. In fact, the spaces $B_{\infty,k}$ and $B_{\infty,k_1}(B_{\infty,k_2})$ not even are isomorphic: By virtue of [6, Theorem 5.1.5], the space $B_{\infty,k_1}(B_{\infty,k_2}) \simeq L_{\infty}(\mathbb{R}^n, L_{\infty}(\mathbb{R}^m))$ contains a complemented copy of c_0 , however the space $B_{\infty,k} \simeq L_{\infty}(\mathbb{R}^{n+m}) \simeq l_{\infty}$ has no complemented copies of c_0 by a classical result of Phillips (see, e.g., [6, Corollary 1.3.2]).

Let Ω be an open set in \mathbb{R}^n and let $\omega \in \mathcal{M}_n$, $k \in \mathcal{K}_\omega$ and $1 \leq p \leq \infty$. Let $(K_j)_{j=1}^\infty$ be a fundamental sequence of compacts in Ω and, for each j, let $\varphi_j \in D_\omega(\mathring{K}_{j+1})$ such that $\varphi_j = 1$ on K_j . Let Y_j be the closure of $\{\varphi_j u: u \in B_{p,k}\}$ in $B_{p,k}$ and let B_j be the continuous extension to Y_{j+1} of the operator $\varphi_{j+1}u \to \varphi_j u$ (this operator is continuous since, by [3, Theorem 2.2.7], $\|\varphi_j u\|_{p,k} = \|\varphi_j(\varphi_{j+1}u)\|_{p,k} \leq \|\varphi_j\|_{1,M_k} \|\varphi_{j+1}u\|_{p,k}$ for all $u \in B_{p,k}$). Then the following lemma holds:

Lemma 4.3. The map $T: B_{p,k}^{\text{loc}}(\Omega) \to \text{proj}(Y_j, B_j)$ defined by $T(u) = (\varphi_j u)_{j=1}^{\infty}$ is an isomorphism.

Proof. If $u \in B_{p,k}^{\text{loc}}(\Omega)$, then $\varphi_{j+1}u \in B_{p,k}$ and $\varphi_j u = \varphi_j(\varphi_{j+1}u) \in Y_j$. Furthermore, $B_j(\varphi_{j+1}u) = B_j[\varphi_{j+1}(\varphi_{j+2}u)] = \varphi_j(\varphi_{j+2}u) = \varphi_j u$ and so *T* is a well-defined operator. Moreover, since the seminorms $\|\cdot\|_{p,k,\varphi_j}$ generate the topology of $B_{p,k}^{\text{loc}}(\Omega)$, *T* becomes an isomorphism from $B_{p,k}^{\text{loc}}(\Omega)$ onto Im *T*. In consequence, Im *T* is a closed subspace of proj (Y_j, B_j) . Let us see that Im *T* coincides with proj (Y_j, B_j) . First recall that the seminorms $\|(y_j)_1^{\infty}\|_N^* = \sum_{j=1}^N \|y_j\|_{p,k}, N = 1, 2, \ldots$, generate the topology of proj (Y_j, B_j) (see [20, p. 230]). Then fix $(y_j) \in \text{proj}(Y_j, B_j)$ and take $\varepsilon > 0$ and $N \ge 1$. Put $C = 1 + \sum_{j=1}^{N-1} \prod_{l=j}^{N-1} \|\varphi_l\|_{1,M_k}$ and choose $v \in B_{p,k}$ such that $\|y_N - \varphi_N v\|_{p,k} < \frac{\varepsilon}{C}$. Then $u = v|_{D_w(\Omega)} \in B_{p,k}^{\text{loc}}(\Omega)$ and $\varphi_j u = \varphi_j v$ for all *j*. Thus, using Theorem 2.2.7 of [3], we get

$$\|y_{j} - \varphi_{j}u\|_{p,k} = \|B_{j}(y_{j+1}) - B_{j}(\varphi_{j+1}u)\|_{p,k} \leq \|B_{j}\|\|y_{j+1} - \varphi_{j+1}u\|_{p,k} \leq \|\varphi_{j}\|_{1,M_{k}}\|y_{j+1} - \varphi_{j+1}u\|_{p,k}$$
$$\leq \cdots \leq \|\varphi_{j}\|_{1,M_{k}} \cdots \|\varphi_{N-1}\|_{1,M_{k}}\|y_{N} - \varphi_{N}u\|_{p,k}, \quad j = 1, \dots, N-1,$$

and so

$$|(y_j) - T(u)||_N^* = \sum_{j=1}^N ||y_j - \varphi_j u||_{p,k} < \varepsilon.$$

This proves that Im T is dense in $\operatorname{proj}(Y_i, B_i)$. Thus Im $T = \operatorname{proj}(Y_i, B_i)$ as we required. \Box

Lemma 4.4. Let X be a Banach space, Y be a closed linear subspace of X and $f \in L_1^{\text{loc}}(X)$ such that $\int_{\mathbb{R}^n} \varphi(x) f(x) dx \in Y$ for every $\varphi \in D_{\omega}$ ($\omega \in \mathcal{M}_n$). Then, $f(x) \in Y$ for a.e. x.

Proof. If $\pi : X \to X/Y$ is the quotient map, then $\int_{\mathbb{R}^n} \varphi(x) \pi(f(x)) dx = \pi(\int_{\mathbb{R}^n} \varphi(x) f(x) dx) = 0$ for every $\varphi \in D_\omega$ and so $\int_{\mathbb{R}^n} \varphi(x) \langle \pi(f(x)), u \rangle dx = 0$ for all $u \in (X/Y)'$ and for all $\varphi \in D_\omega$. This implies, by [3, Theorem 1.3.18], that $u \circ (\pi \circ f) = 0$ a.e. for all $u \in (X/Y)'$. Then, applying [9, Corollary 7, p. 48], we conclude that $\pi(f(x)) = 0$ for a.e. x, i.e., that $f(x) \in Y$ for a.e. x. \Box

Theorem 4.5. If Ω_1 (respectively Ω_2) is an open set in \mathbb{R}^n (respectively \mathbb{R}^m), $\omega_1 \in \mathcal{M}_n$, $\omega_2 \in \mathcal{M}_m$ and $\omega \in \mathcal{M}_{n+m}$ satisfy (3.1), $k_1 \in \mathcal{K}_{\omega_1}$, $k_2 \in \mathcal{K}_{\omega_2}$, $k = k_1 \otimes k_2$ and $1 \leq p < \infty$, then the restriction of the canonical isomorphism R to $B_{p,k}^{\text{loc}}(\Omega_1 \times \Omega_2)$ is an isomorphism of this space onto the iterated space $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2))$.

Proof. Step 1. We denote the restriction of R to $B_{p,k}^{\text{loc}}(\Omega_1 \times \Omega_2)$ by R^{loc} . Let $u \in B_{p,k}^{\text{loc}}(\Omega_1 \times \Omega_2)$ and put $U = R^{\text{loc}}(u)$. Let us see that $U \in B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2))$. Fix $\varphi \in D_{\omega_1}(\Omega_1)$ and choose $\varphi_0 \in D_{\omega_1}(\Omega_1)$ so that $\varphi_0 = 1$ on supp φ . By Theorem 3.2, $U(\varphi) \in D'_{\omega_2}(\Omega_2)$. Moreover, for every $\psi \in D_{\omega_2}(\Omega_2)$ we have (see the proof of Lemma 4.1)

$$\begin{split} \left[\psi U(\varphi)\right]^{\wedge}(\theta) &= \left[\psi U(\varphi)\right](\hat{\theta}) = U(\varphi)(\psi\hat{\theta}) = u(\varphi \otimes \psi\hat{\theta}) = u(\varphi\varphi_0 \otimes \psi\hat{\theta}) = u\left[(\varphi \otimes \psi)(\varphi_0 \otimes \hat{\theta})\right] \\ &= \left[(\varphi \otimes \psi)u\right](\varphi_0 \otimes \hat{\theta}) = R_2\left[(\varphi \otimes \psi)u\right](\varphi_0)(\hat{\theta}) = \left[R_2\left[(\varphi \otimes \psi)u\right](\varphi_0)\right]^{\wedge}(\theta) \\ &= \left[R_3\left[(\varphi \otimes \psi)u\right](\varphi_0)\right]^{\wedge}(\theta) \end{split}$$

for all $\theta \in S_{\omega_2}$. Hence it follows that the ultradistributions $\psi U(\varphi)$ and $R_3[(\varphi \otimes \psi)u](\varphi_0)$ coincide, and so $\psi U(\varphi) \in B_{p,k_2}$. Consequently, $U(\varphi) \in B_{p,k_2}^{loc}(\Omega_2)$ and U is an operator from $D_{\omega_1}(\Omega_1)$ into $B_{p,k_2}^{loc}(\Omega_2)$. Let us see that it is continuous. Let $\phi_j \to \phi$ in $D_{\omega_1}(\Omega_1)$ and let $U(\phi_j) \to v$ in $B_{p,k_2}^{loc}(\Omega_2)$. Then $U(\phi_j) \to U(\phi)$ in $D'_{\omega_2}(\Omega_2)$, since $U \in L(D_{\omega_1}(\Omega_1), D'_{\omega_2}(\Omega_2))$. On the other hand, $U(\phi_j) \to v$ in $D'_{\omega_2}(\Omega_2)$ since $B_{p,k_2}^{loc}(\Omega_2) \hookrightarrow D'_{\omega_2}(\Omega_2)$ [3, Theorem 2.3.5]. Therefore, $U(\phi) = v$. This proves that U is sequentially closed, and the Grothendieck's closed-graph theorem [12, Chapter I, p. 17] gives the desired continuity. Whence it follows that φU and $\widehat{\varphi U}$ are continuous operators from S_{ω_1} into $B_{p,k_2}^{loc}(\Omega_2)$. Next it will be shown that $\widehat{\varphi U} \in L_{p,k_1}(B_{p,k_2}^{loc}(\Omega_2))$. To do this, we first identify $B_{p,k_2}^{loc}(\Omega_2)$ with the projective limit proj (Y_j, B_j) (see Lemma 4.3: if $(K_2^j)_{j=1}^{\infty}$ is a fundamental sequence of compacts in Ω_2 and, for each j, $\psi_j \in D_{\omega_2}(K_2^{j+1})$ and $\psi_j = 1$ on K_2^j , then Y_j is the closure of $\{\psi_j v: v \in B_{p,k_2}\}$ in B_{p,k_2}, B_j is the continuous extension to Y_{j+1} of the operator $\psi_{j+1}v \to \psi_j v$ and P_j is the j th canonical projection from proj (Y_j, B_j) (see Section 1). Let us see that the operators $P_j \circ \widehat{\varphi U}$ and $[R_3[(\varphi \otimes \psi_j)u]]^{\wedge}$ (see Lemma 4.1)

$$S_{\omega_1} \longrightarrow B_{p,k_2}^{\text{loc}}(\Omega_2) = \text{proj}(Y_j, B_J)$$

$$P_j \circ \varphi U \qquad \qquad \downarrow P_j$$

$$Y_j \hookrightarrow B_{p,k_2}$$

coincide. In fact, for each $\theta \in S_{\omega_1}$, we have $(P_j \circ \widehat{\varphi U})(\theta) = \psi_j \widehat{\varphi U}(\theta) = \psi_j U(\hat{\theta}\varphi)$ and $[R_3[(\varphi \otimes \psi_j)u]]^{\wedge}(\theta) = R_3[(\varphi \otimes \psi_j)u](\hat{\theta})$ and then, for each $\zeta \in S_{\omega_2}$, we get $(P_j \circ \widehat{\varphi U})(\theta)(\zeta) = [R_3[(\varphi \otimes \psi_j)u]]^{\wedge}(\theta)(\zeta) = u(\varphi \hat{\theta} \otimes \psi_j \zeta)$ as we required. Now let f_j be the function in $L_{p,k_1}(B_{p,k_2})$ which represents to $[R_3[(\varphi \otimes \psi_j)u]]^{\wedge}$, that is, such that

$$(P_j \circ \widehat{\varphi U})(\theta) = \left[R_3 \left[(\varphi \otimes \psi_j) u \right] \right]^{\wedge} (\theta) = \int_{\mathbb{R}^n} \theta(x) f_j(x) \, dx, \quad \theta \in S_{\omega_1}.$$

Then this integral lies in the subspace Y_j of B_{p,k_2} and so, by Lemma 4.4, $f_j \in L_{p,k_1}(Y_j)$. Let us check that $(f_j)_{j=1}^{\infty} \in proj(L_{p,k_1}(Y_j), \overline{B}_j)$. For each j we have

$$\int_{\mathbb{R}^n} \theta(x) B_j(f_{j+1}(x)) dx = B_j[(P_{j+1} \circ \widehat{\varphi U})(\theta)] = B_j[\psi_{j+1}U(\hat{\theta}\varphi)] = \psi_j U(\hat{\theta}\varphi) = (P_j \circ \widehat{\varphi U})(\theta)$$
$$= \int_{\mathbb{R}^n} \theta(x) f_j(x) dx, \quad \theta \in S_{\omega_1},$$

and hence $B_j(f_{j+1}(x)) = f_j(x)$ for a.e. x, that is, $\overline{B}_j(f_{j+1}) = f_j$ by Lemma 4.4. In consequence, the function $f(x) = (f_j(x))_{j=1}^{\infty}$ is in $L_{p,k_1}(B_{p,k_2}^{\text{loc}}(\Omega_2))$, that is, $\widehat{\varphi U} \in L_{p,k_1}(B_{p,k_2}^{\text{loc}}(\Omega_2))$. Definitionnitively, $U \in B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2))$ and R^{loc} is an operator from $B_{p,k}^{\text{loc}}(\Omega_1 \times \Omega_2)$ into $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2))$.

Step 2. Naturally R^{loc} is one-to-one, let us see that it is onto. Let $U \in B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2))$. Since $B_{p,k_2}^{\text{loc}}(\Omega_2) \hookrightarrow D'_{\omega_2}(\Omega_2)$, $U \in L(D_{\omega_1}(\Omega_1), D'_{\omega_2}(\Omega_2))$ and so, by Theorem 3.2, we can find $u \in D'_{\omega}(\Omega_1 \times \Omega_2)$ such that $U(\varphi)(\psi) = u(\varphi \otimes \psi)$ for all $\varphi \in D_{\omega_1}(\Omega_1)$ and all $\psi \in D_{\omega_2}(\Omega_2)$. We next prove that $(\varphi \otimes \psi)u \in B_{p,k}$ for each $\varphi \in D_{\omega_1}(\Omega_1)$ and each $\psi \in D_{\omega_2}(\Omega_2)$, and then, that $\phi u \in B_{p,k}$ for each $\phi \in D_{\omega}(\Omega_1 \times \Omega_2)$. Fix φ and ψ . Then $\varphi U \in B_{p,k_1}(B_{p,k_2}^{\text{loc}}(\Omega_2))$, that is, $\widehat{\varphi U} \in L_{p,k_1}(B_{p,k_2}^{\text{loc}}(\Omega_2))$, and the function $F = M_{\psi} \circ \widehat{\varphi U}$ (M_{ψ} is the operator $v \to \psi v$ from $B_{p,k_2}^{\text{loc}}(\Omega_2)$ into $B_{p,k_2}(\Omega_2)$) is in $L_{p,k_1}(B_{p,k_2})$ since it is Bochner measurable ($\widehat{\varphi U}$ is Bochner measurable and M_{ψ} is linear and continuous) and $\int_{\mathbb{R}^n} \|F(x)\|_{p,k_2}^p k_1^p(x) dx = \int_{\mathbb{R}^n} \|\widehat{\psi \varphi U}(x)\|_{p,k_2}^p k_1^p(x) dx = \int_{\mathbb{R}^n} \|\widehat{\varphi U}(x)\|_{p,k_2,\psi}^p k_1^p(x) dx < \infty$. If we prove that $[R_2[(\varphi \otimes \psi)u]]^{\wedge} = F$ (as elements of $L(S_{\omega_1}, S'_{\omega_2})$) then $R_2[(\varphi \otimes \psi)u] \in B_{p,k_1}(B_{p,k_2})$ and so, by Lemma 4.1, $(\varphi \otimes \psi)u \in B_{p,k}$. For all $f \in S_{\omega_1}$ and all $g \in S_{\omega_2}$ we get

$$\begin{split} \left[R_2\left[(\varphi \otimes \psi)u\right]\right]^{\wedge}(f)(g) &= \left[R_2\left[(\varphi \otimes \psi)u\right]\right](\hat{f})(g) = \left[(\varphi \otimes \psi)u\right](\hat{f} \otimes g) = u(\varphi \hat{f} \otimes \psi g) \\ &= U(\varphi \hat{f})(\psi g) = \left[\psi U(\varphi \hat{f})\right](g) = \left[\psi(\varphi U)(\hat{f})\right](g) = \left[\psi \widehat{\varphi U}(f)\right](g) \\ &= \left[\psi \int_{\mathbb{R}^n} \widehat{\varphi U}(x)f(x)\,dx\right](g) = \left[\int_{\mathbb{R}^n} \psi \widehat{\varphi U}(x)f(x)\,dx\right](g) \\ &= \left[\int_{\mathbb{R}^n} F(x)f(x)\,dx\right](g) = F(f)(g), \end{split}$$

and this establishes the required equality. To prove that $\phi u \in B_{p,k}$ for all $\phi \in D_{\omega}(\Omega_1 \times \Omega_2)$, we reason as follows. Given such a ϕ , let K_1, K_2 be regular compacts such that $\phi \in D_{\omega}(K_1 \times K_2)$ and let us see that the bilinear map $J_u: D_{\omega_1}(K_1) \times D_{\omega_2}(K_2) \to B_{p,k}$ defined by $J_u(\varphi, \psi) = (\varphi \otimes \psi)u$ is continuous. Since the $D_{\omega_i}(K_i)$ are Fréchet spaces, it will be sufficient to prove that J_u is separately continuous [28, Corollary, p. 354]. Suppose that $\varphi_j \to \varphi$ in $D_{\omega_1}(K_1)$ and $(\varphi_j \otimes \psi)u \to v$ in $B_{p,k}$. Then $\varphi_j \otimes \psi \to \varphi \otimes \psi$ in $D_{\omega}(K_1 \times K_2)$ and $(\varphi_j \otimes \psi)u \to (\varphi \otimes \psi)u$ in S'_{ω} . Since $B_{p,k} \hookrightarrow S'_{\omega}$, it results that $v = (\varphi \otimes \psi)u$. In consequence, the map $\varphi \to (\varphi \otimes \psi)u$ is closed and therefore continuous by the closed-graph theorem [28, Corollary 4, p. 173]. The argument for the map $\psi \to (\varphi \otimes \psi)u$ is just the same. Then the linearization of J_u extends to a continuous operator $\overline{J_u}$ from $D_{\omega_1}(K_1) \hat{\otimes}_{\pi} D_{\omega_2}(K_2)$ into $B_{p,k}$, that is, to a continuous operator $\overline{J_u}$ from $D_{\omega}(K_1 \times K_2)$ into $B_{p,k}$ (see Theorem 3.2). Now it is immediate to verify that $\overline{J_u}(\phi) = \phi u$. Consequently, $\phi u \in B_{p,k}$ and $u \in B_{p,k}^{\mathrm{loc}}(\Omega_1 \times \Omega_2)$. Since obviously $R^{\mathrm{loc}}(u) = U$, the map R^{loc} is onto.

Step 3. We show that R^{loc} is an isomorphism. To do this, we use the graph-closed theorem [28, Corollary 4, p. 173] again. Assume that $u_j \to u$ in $B_{p,k}^{\text{loc}}(\Omega_1 \times \Omega_2)$ and $R^{\text{loc}}(u_j) \to v$ in $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2))$. By virtue of the embeddings $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2)) \hookrightarrow D'_{\omega_1}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2)), B_{p,k_2}^{\text{loc}}(\Omega_2) \hookrightarrow D'_{\omega_2}(\Omega_2)$ and $B_{p,k_1}^{\text{loc}}(\Omega_1 \times \Omega_2) \hookrightarrow D'_{\omega}(\Omega_1 \times \Omega_2)$

we get for all $\varphi \in D_{\omega_1}(\Omega_1)$ and all $\psi \in D_{\omega_2}(\Omega_2)$

$$\begin{split} R^{\text{loc}}(u_j)(\varphi) &\to v(\varphi) \quad \text{in } B^{\text{loc}}_{p,k_2}(\Omega_2), \\ R^{\text{loc}}(u_j)(\varphi)(\psi) &\to v(\varphi)(\psi), \\ R^{\text{loc}}(u_j)(\varphi)(\psi) &= u_j(\varphi \otimes \psi) \to u(\varphi \otimes \psi) \end{split}$$

thus $R^{\text{loc}}(u) = v$. Hence it follows, since our local spaces are Fréchet spaces, that R^{loc} is continuous. Finally, we apply the open mapping theorem [28, Theorem 17.1].

Using Theorem 4.5 and the natural isomorphism $B_{p,k_1\otimes k_2}^{\text{loc}}(\Omega_1 \times \Omega_2) \simeq B_{p,k_2\otimes k_1}^{\text{loc}}(\Omega_2 \times \Omega_1)$, one may immediately obtain the isomorphism $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{p,k_2}^{\text{loc}}(\Omega_2)) \simeq B_{p,k_2}^{\text{loc}}(\Omega_2, B_{p,k_1}^{\text{loc}}(\Omega_1))$. Next we shall prove that if $p \neq q$, then, in general, the spaces $B_{p,k_1}^{\text{loc}}(\Omega_1, B_{q,k_2}^{\text{loc}}(\Omega_2))$ and $B_{q,k_2}^{\text{loc}}(\Omega_2, B_{p,k_1}^{\text{loc}}(\Omega_1))$ are not isomorphic. We shall require the following simple lemma whose proof we omit.

Lemma 4.6. Let Ω be an open set in \mathbb{R}^n , $\omega \in \mathcal{M}_n$, $k \in \mathcal{K}_\omega$, $1 \leq p \leq \infty$ and let $(E_j)_{j=1}^\infty$ be a sequence of Banach spaces. Then the space $B_{p,k}^{\text{loc}}(\Omega, \prod_{j=1}^{\infty} E_j)$ is isomorphic to $\prod_{j=1}^{\infty} B_{p,k}^{\text{loc}}(\Omega, E_j)$.

We shall also need the following lemmata.

Lemma 4.7. Let Ω be an open set in \mathbb{R}^n , $\omega \in \mathcal{M}_n$, $k \in \mathcal{K}_\omega$, $1 \leq p < \infty$ and let E be a Banach space whose dual E'possesses the Radon–Nykodým property. Then $B_{p',1/\tilde{k}}^{\text{loc}}(\Omega, E')$ is isomorphic to $(B_{p,k}^{c}(\Omega, E))_{b}^{\prime}$.

Proof. See Theorem 3.1 of [23]. \Box

In [24] we have shown that the spaces $B_{p,k}^c(\mathbb{R}^n)$ are isomorphic to $l_p^{(\mathbb{N})}$ (see [34] for p = 1) and the spaces $B_{p,k}^c(\mathbb{R}^n, l_2)$ are isomorphic to $(l_p(l_2))^{(\mathbb{N})}$ if $p \in (1, \infty)$ and k is a temperate weight function on \mathbb{R}^n such that $k^p \in A_p^*$. By using the methods of the proof of Corollary 5.6 of [24] we have obtained in [23, Theorem 4.1] the following result.

Lemma 4.8. Assume $1 < p, q < \infty$ and let k be a temperate weight function on \mathbb{R}^n with $k^p \in A_p^*$. Then the space $B_{pk}^c(\mathbb{R}^n, l_q)$ is isomorphic to $\bigoplus_{i=0}^{\infty} G_i$ where G_0 is isomorphic to $l_p(l_q)$ and G_i is isomorphic to a complemented subspace of $l_p(l_q)$ for $j = 1, 2, \ldots$

Theorem 4.9. If k_1 (respectively k_2) is a temperate weight function on \mathbb{R}^n (respectively \mathbb{R}^m) such that $k_1^p \in A_p^*$ (respectively $k_2^q \in A_q^*$) and $1 < p, q < \infty$ with $p \neq q$, then the spaces $B_{p,k_1}^{\text{loc}}(\mathbb{R}^n, B_{q,k_2}^{\text{loc}}(\mathbb{R}^m))$ and $B_{q,k_2}^{\text{loc}}(\mathbb{R}^n, B_{p,k_1}^{\text{loc}}(\mathbb{R}^n))$ are not isomorphic.

Proof. Since $1/\tilde{k}_1$ (respectively $1/\tilde{k}_2$) is a temperate weight function on \mathbb{R}^n (respectively \mathbb{R}^m) such that $1/\tilde{k}_1^{p'} \in A_{n'}^*$ (respectively $1/\tilde{k}_2^{q'} \in A_{q'}^*$), it follows by Lemma 4.8 that $B_{p',1/\tilde{k}_1}^c(\mathbb{R}^n, l_{q'})$ is isomorphic to $\bigoplus_{j=0}^{\infty} G_j$ where $G_0 \simeq$ $l_{p'}(l_{q'})$ and $G_j < l_{p'}(l_{q'})$ for j = 1, 2, ..., and that $B_{q',1/\tilde{k}_2}^c(\mathbb{R}^m, l_{p'})$ is isomorphic to $\bigoplus_{j=0}^{\infty} H_j$ where $H_0 \simeq l_{q'}(l_{p'})$ and $H_j < l_{q'}(l_{p'})$ for j = 1, 2, ... On the other hand, recall that if $(E_j)_{j=1}^{\infty}$ is a sequence of Banach spaces, then the space $(\bigoplus_{j=1}^{\infty} E_j)'_b$ is isomorphic to $\prod_{j=1}^{\infty} E'_j$ (see [15, p. 168]). On the basis of these results and the previous lemmata, one may derive immediately the isomorphisms

$$\begin{split} B_{p,k_1}^{\mathrm{loc}}(\mathbb{R}^n, B_{q,k_2}^{\mathrm{loc}}(\mathbb{R}^m)) &\simeq B_{p,k_1}^{\mathrm{loc}}(\mathbb{R}^n, \left(B_{q',1/\tilde{k}_2}^c(\mathbb{R}^m)\right)_b') \simeq B_{p,k_1}^{\mathrm{loc}}(\mathbb{R}^n, \left(l_{q'}^{(\mathbb{N})}\right)_b') \simeq B_{p,k_1}^{\mathrm{loc}}(\mathbb{R}^n, l_q^{\mathbb{N}}) \\ &\simeq \left(B_{p,k_1}^{\mathrm{loc}}(\mathbb{R}^n, l_q)\right)^{\mathbb{N}} \simeq \left(\left(B_{p',1/\tilde{k}_1}^c(\mathbb{R}^n, l_{q'})\right)_b'\right)^{\mathbb{N}} \simeq \left(\left(\bigoplus_{j=0}^{\infty} G_j\right)_b'\right)^{\mathbb{N}} \simeq \left(\prod_{j=0}^{\infty} G_j'\right)^{\mathbb{N}} \\ &< \left(l_p(l_q)^{\mathbb{N}}\right)^{\mathbb{N}} \simeq \left(l_p(l_q)\right)^{\mathbb{N}}. \end{split}$$

Similarly, we get

$$B_{q,k_2}^{\mathrm{loc}}(\mathbb{R}^m, B_{p,k_1}^{\mathrm{loc}}(\mathbb{R}^n)) \simeq \left(\prod_{j=0}^{\infty} H_j'\right)^{\mathbb{N}} < (l_q(l_p))^{\mathbb{N}}.$$

Suppose now that our iterated spaces are isomorphic. Then the previous isomorphisms yield that the space $l_p(l_q)$ (respectively $l_q(l_p)$) becomes isomorphic to a complemented subspace of $(l_q(l_p))^{\mathbb{N}}$ (respectively $(l_p(l_q))^{\mathbb{N}}$). Hence it follows, by [8], that there exist positive integers α , β such that $l_p(l_q) < (l_q(l_p))^{\alpha} (\simeq l_q(l_p))$ and $l_q(l_p) < (l_p(l_q))^{\beta} (\simeq l_p(l_q))$. We are now in a position to apply Pelczynski's decomposition method to conclude that $l_p(l_q) \simeq l_q(l_p)$. This however contradicts the assumption that $p \neq q$ (see, e.g., [31, p. 242]). In consequence, $B_{p,k_1}^{\text{loc}}(\mathbb{R}^n, B_{q,k_2}^{\text{loc}}(\mathbb{R}^m))$ and $B_{q,k_2}^{\text{loc}}(\mathbb{R}^m, B_{p,k_1}^{\text{loc}}(\mathbb{R}^n))$ are not isomorphic and the proof is complete. \Box

We do not know if the above theorem is valid for other values of p and q. We thus propose the following question.

Problem 4.10. For which weights k_1 , k_2 and $q \in [1, \infty]$ the iterated spaces $B_{1,k_1}^{\text{loc}}(\mathbb{R}^n, B_{q,k_2}^{\text{loc}}(\mathbb{R}^m))$ and $B_{q,k_2}^{\text{loc}}(\mathbb{R}^m, B_{q,k_2}^{\text{loc}}(\mathbb{R}^m))$ are not isomorphic?

By using results of Vogt [34] and [23, Theorem 3.1] we have shown (the proof will appear elsewhere) the isomorphisms $B_{1,k_1}^{\text{loc}}(\mathbb{R}^n, B_{\infty,k_2}^{\text{loc}}(\mathbb{R}^m)) \simeq (l_1(l_\infty))^{\mathbb{N}}$ and $B_{\infty,k_2}^{\text{loc}}(\mathbb{R}^m, B_{1,k_1}^{\text{loc}}(\mathbb{R}^n)) \simeq (l_\infty(l_1))^{\mathbb{N}}$ for some Hörmander weights k_j , j = 1, 2. Hence, these iterated spaces are not isomorphic if and only if $l_1(l_\infty)$ and $l_\infty(l_1)$ are not isomorphic either. Thus we are also interested in the following question of Banach space theory.

Problem 4.11. Are the Banach spaces $l_1(l_{\infty})$ and $l_{\infty}(l_1)$ not isomorphic?

5. Weighted L_p -spaces of entire analytic functions

In this last section we present a similar result to Theorem 4.5 for weighted L_p -spaces of entire analytic functions. We also give a result on iterated Besov spaces: $B_{2,q}^s(\mathbb{R}^n, B_{2,q}^s(\mathbb{R}^m))$ and $B_{2,q}^s(\mathbb{R}^{n+m})$ are not isomorphic when $-\infty < s < \infty$ and $1 < q \neq 2 < \infty$.

Theorem 5.1. If K_1 (respectively K_2) is a regular compact in \mathbb{R}^n (respectively \mathbb{R}^m), $K = K_1 \times K_2$, $\omega_1 \in \mathcal{M}_n$, $\omega_2 \in \mathcal{M}_m$ and $\omega \in \mathcal{M}_{n+m}$ satisfy (3.1), $\rho_1 \in R(\omega_1)$, $\rho_2 \in R(\omega_2)$, $\rho = \rho_1 \otimes \rho_2$ and $1 \leq p < \infty$, then $L_{p,\rho}^K(\mathbb{R}^{n+m})$ is isometrically isomorphic to the iterated space $L_{p,\rho_1}^{K_1}(\mathbb{R}^n, L_{p,\rho_2}^{K_2}(\mathbb{R}^m))$.

We shall write $L_{p,\rho}^{K}$ (respectively $L_{p,\rho_1}^{K_1}$, $L_{p,\rho_2}^{K_2}$, $L_{p,\rho_1}^{K_1}(L_{p,\rho_2}^{K_2})$) instead of $L_{p,\rho}^{K}(\mathbb{R}^{n+m})$ (respectively $L_{p,\rho_1}^{K_1}(\mathbb{R}^n)$, $L_{p,\rho_2}^{K_2}(\mathbb{R}^m)$, $L_{p,\rho_1}^{K_2}(\mathbb{R}^m)$, $L_{p,\rho_2}^{K}(\mathbb{R}^m)$)), and we shall denote by $S_{\omega}^{K}[L_{p,\rho}^{K}]$ the space S_{ω}^{K} endowed with the norm $\|\cdot\|_{p,\rho}$.

Proof of Theorem 5.1. First we show that the natural map $N : S_{\omega}^{K}[L_{p,\rho}^{K}] \to L_{p,\rho_{1}}^{K_{1}}(L_{p,\rho_{2}}^{K_{2}})$ defined by $Nf(x) = f(x, \cdot)$ is well defined and is linear and norm-preserving. Let $f \in S_{\omega}^{K}$. It is easily verified that $f(x, \cdot) \in L_{p,\rho_{2}}^{K_{2}}$ and $Nf \in L_{p,\rho_{1}}(L_{p,\rho_{2}}^{K_{2}})$. Let us see that $\sup Nf \subset K_{1}$: For every $\varphi \in D_{\omega_{1}}(\mathbb{C}K_{1})$ we have

$$\langle \varphi, \widehat{Nf} \rangle = \langle \hat{\varphi}, Nf \rangle = \int_{\mathbb{R}^n} \hat{\varphi}(x) Nf(x) \, dx \quad \left(\in L_{p,\rho_2}^{K_2} \right)$$

and so, since the Dirac deltas $\delta_y \in (L_{p,\rho_2}^{K_2})'$ (see [30, p. 36]), we get

$$\begin{aligned} \left\langle \psi, \left\langle \varphi, \widehat{Nf} \right\rangle \right\rangle &= \int_{\mathbb{R}^m} \psi(y) \left(\int_{\mathbb{R}^n} \hat{\varphi}(x) Nf(x) \, dx \right)(y) \, dy = \int_{\mathbb{R}^m} \psi(y) \left(\int_{\mathbb{R}^n} \hat{\varphi}(x) Nf(x) \, dx, \delta_y \right) dy \\ &= \int_{\mathbb{R}^m} \psi(y) \left(\int_{\mathbb{R}^n} \hat{\varphi}(x) f(x, y) \, dx \right) dy = \int_{\mathbb{R}^{n+m}} \hat{\varphi}(x) \psi(y) f(x, y) \, dx \, dy \end{aligned}$$

for all $\psi \in S_{\omega_2}$. Thus, for $\psi \in D_{\omega_2}$ we have that

$$\left\langle \hat{\psi}, \left\langle \varphi, \widehat{Nf} \right\rangle \right\rangle = \int_{\mathbb{R}^{n+m}} \varphi(x) \hat{\psi}(x) f(x, y) \, dx \, dy = \int_{\mathbb{R}^{n+m}} \varphi \otimes \psi(x, y) \hat{f}(x, y) \, dx \, dy = 0$$

since $\varphi \otimes \psi \in D_{\omega}(\mathbb{C}K)$ in virtue of (3.1), and hence, by the denseness of $\{\hat{\psi}: \psi \in D_{\omega_2}\}$ in S_{ω_2} [3, Theorem 1.8.7], it follows that $\langle \varphi, \widehat{Nf} \rangle = 0$. Consequently $\sup p \widehat{Nf} \subset K_1$ and $Nf \in L_{p,\rho_1}^{K_1}(L_{p,\rho_2}^{K_2})$. Then N is linear and preserves the norm and, since S_{ω}^K is dense in $L_{p,\rho}^K$ [30, p. 40], it can be extended to a norm preserving linear operator from $L_{p,\rho}^K$ into $L_{p,\rho_1}^{K_1}(L_{p,\rho_2}^{K_2})$ which will also be denoted by N. It remains to prove that N is surjective. Given $G \in L_{p,\rho_1}^{K_1}(L_{p,\rho_2}^{K_2})$, we define $f: \mathbb{R}^{n+m} \to \mathbb{C}: (x, y) \to G(x)(y)$ (we may suppose, see Section 2, that G is the restriction to \mathbb{R}^n of an $L_{p,\rho_2}^{K_2}$ valued entire function of exponential type and that, for all $x \in \mathbb{R}^n$, G(x) is the restriction to \mathbb{R}^m of an entire function of exponential type. Let us see that $f \in L_{p,\rho}$. By virtue of the estimate $1/\rho_2(y) \leq C e^{\omega_2(y)}$ and the embedding $L_{p,\rho_2}^{K_2} \hookrightarrow L_{\infty,\rho_2}^{K_2}$ (see [30, p. 36]), we have that

$$\begin{aligned} \left| f(x, y) - f(x_0, y_0) \right| &= \left| G(x)(y) - G(x_0)(y_0) \right| \leq \left| G(x)(y) - G(x_0)(y) \right| + \left| G(x_0)(y) - G(x_0)(y_0) \right| \\ &\leq C e^{\omega_2(y)} \left\| G(x) - G(x_0) \right\|_{p,\rho_2} + \left| G(x_0)(y) - G(x_0)(y_0) \right| \to 0 \end{aligned}$$

when $(x, y) \to (x_0, y_0)$. Thus f is continuous, $||f||_{p,\rho} = ||G||_{L^{K_1}_{p,\rho_1}(L^{K_2}_{p,\rho_2})}$ and $f \in L_{p,\rho}$. Actually, $f \in L^K_{p,\rho}$. In fact, if we proceed as above, then

 $\langle \Phi, \hat{f} \rangle = \langle \Psi, \hat{f} \rangle = 0, \qquad \Phi \in D_{\omega_1}(\mathcal{C}K_1) \otimes D_{\omega_2}, \qquad \Psi \in D_{\omega_1} \otimes D_{\omega_2}(\mathcal{C}K_2),$

and so, by Theorem 3.2(1), we get

$$\langle \Phi, \hat{f} \rangle = \langle \Psi, \hat{f} \rangle = 0, \qquad \Phi \in D_{\omega}(\mathbb{C}K_1 \times \mathbb{R}^m), \qquad \Psi \in D_{\omega}(\mathbb{R}^n \times \mathbb{C}K_2).$$
 (5.1)

Hence it follows that $\langle \Phi, \hat{f} \rangle = 0$ holds for all $\Phi \in D_{\omega}(\mathbb{C}K)$ (since given such a Φ , we have $\sup \Phi \subset \mathbb{C}K = (\mathbb{C}K_1 \times \mathbb{R}^m) \cup (\mathbb{R}^n \times \mathbb{C}K_2)$ and then it suffices to take a D_{ω} -partition of unity at $\sup \Phi$ subordinate to this covering and use (5.1)). Therefore, $f \in L_{p,\rho}^K$. Finally, from the embeddings $L_{p,\rho_1}^{K_1}(L_{p,\rho_2}^{K_2}) \hookrightarrow L_{\infty,\rho_1}^{K_1}(L_{p,\rho_2}^{K_2})$ (see [24, Theorem 3.3]), $L_{p,\rho_2}^{K_2} \hookrightarrow L_{\infty,\rho_2}^{K_2}$ and $L_{p,\rho}^K \hookrightarrow L_{\infty,\rho}^K$, it follows that Nf = G. The proof is complete. \Box

The spaces L_p^Q (Q cube in \mathbb{R}^n) are the building blocks of the Besov spaces (see [27,30] and [31]). By using the isomorphism $L_p^Q \simeq l_p$, Triebel proves in [29] (see also [31]) that the Besov spaces $B_{p,q}^s(\mathbb{R}^n)$ are isomorphic to $l_q(l_p)$. Following Triebel's approach [31] it is shown in [24] the vector-valued counterpart of this result: (a) Let $1 , <math>1 \leq q \leq \infty, -\infty < s < \infty$, let $Q \subset \mathbb{R}^n$ be a cube and let E be a Banach space with the UMD-property. Then $L_p^Q(E)$ is isomorphic to $l_p(E)$ and $B_{p,q}^s(E)$ is isomorphic to $l_q(l_p(E))$. (For definitions, notation and basic results about vector-valued Besov spaces see [2] and [26].)

Since the spaces $l_{q_0}(l_{p_0})$ and $l_{q_1}(l_{p_1})$ are isomorphic if and only if $q_0 = q_1$ and $p_0 = p_1$ $(1 \le q_0, q_1 \le \infty \text{ and } 1 < p_0, p_1 < \infty)$ (see, e.g., [31, p. 242]), it follows from (a) that the spaces $L_p^{Q_1}(L_q^{Q_2})$ and $L_q^{Q_2}(L_p^{Q_1})$ are not isomorphic if $1 (here <math>Q_1, Q_2$ are cubes in \mathbb{R}^n). Another application of result (a) is the following.

Theorem 5.2. Let $1 < q \neq 2 < \infty$ and $-\infty < s < \infty$. Then the spaces $B_{2,q}^s(\mathbb{R}^n, B_{2,q}^s(\mathbb{R}^m))$ and $B_{2,q}^s(\mathbb{R}^{n+m})$ are not isomorphic.

Proof. The Besov space $B_{2,q}^s(\mathbb{R}^{n+m})$ is an \mathcal{L}_q -space since $l_q(l_2)$ is an \mathcal{L}_q -space (see [21, Example 8.2]) and $B_{2,q}^s(\mathbb{R}^{n+m})$ is isomorphic to $l_q(l_2)$. On the other hand, since $B_{2,q}^s(\mathbb{R}^m)$ is a UMD space ($l_q(l_2)$ is a UMD space, see, e.g., [1, Theorem 4.5.2]), we can apply (a) and obtain

$$B_{2,q}^{s}\left(\mathbb{R}^{n}, B_{2,q}^{s}\left(\mathbb{R}^{m}\right)\right) \simeq l_{q}\left(l_{2}\left(B_{2,q}^{s}\left(\mathbb{R}^{m}\right)\right)\right) \simeq l_{q}\left(l_{2}\left(l_{q}(l_{2})\right)\right) > l_{2}\left(l_{q}(l_{2})\right) > l_{2}(l_{q})$$

Whence it follows that $B_{2,q}^s(\mathbb{R}^n, B_{2,q}^s(\mathbb{R}^m))$ is not an \mathcal{L}_q -space, since $l_2(l_q)$ is not an \mathcal{L}_q -space [21, p. 316] and a complemented subspace of an \mathcal{L}_q -space which is not isomorphic to a Hilbert space is an \mathcal{L}_q -space [22]. \Box

Acknowledgments

The authors express their deep gratitude to O. Blasco for many valuable discussions and remarks during the preparation of this paper. Also it is a pleasure for us to thank J. Bonet, S. Díaz, A. Galbis and J. Mendoza for several very helpful discussions about this subject.

References

- [1] H. Amann, Linear and Quasilinear Parabolic Problems, vol. I, Birkhäuser-Verlag, Basel, 1995.
- [2] H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. 186 (1997) 5-56.
- [3] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1966) 351-407.
- [4] O. Blasco, Hardy spaces of vector-valued functions: Duality, Trans. Amer. Math. Soc. 308 (1988) 495-507.
- [5] J. Bonet, P.P. Carreras, Some results on barreledness in projective tensor products, Math. Z. 185 (1984) 333–338.
- [6] P. Cembranos, J. Mendoza, Banach Spaces of Vector-Valued Functions, Lecture Notes in Math., vol. 1676, Springer-Verlag, 1997.
- [7] S.Y.A. Chang, R. Fefferman, Some recent developments in Fourier analysis and H^p -theory in product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985) 1-43.
- [8] J.C. Díaz, A note on isomorphisms between powers of Banach spaces, Collect. Math. 38 (1987) 137–140.
- [9] J. Diestel, J.J. Uhl, Vector Measures, Math. Surveys Monogr., vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [10] J. García-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., vol. 116, North-Holland, Amsterdam, 1985.
- [11] H.G. Garnir, M. De Wilde, J. Schmets, Analyse Fonctionelle, vols. II, III, Birkhäuser, Basel-Stuttgart, 1972–1973.
- [12] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., vol. 16, Amer. Math. Soc., Providence, RI, 1955.
- [13] O. Grudzinski, Temperierte Beurling-Distributionen, Math. Nachr. 91 (1979) 297-320.
- [14] L. Hörmander, The Analysis of Linear Partial Differential Operators II, Grundlehren, vol. 257, Springer, Berlin, 1983.
- [15] H. Jarchow, Locally Convex Spaces, Teubner-Verlag, Stuttgart, 1981.
- [16] D. Jornet, A. Oliaro, Functional composition in $B_{p,k}$ spaces and applications, Math. Scand. 99 (2) (2006) 175–203.
- [17] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973) 25–105.
- [18] H. Komatsu, Ultradistributions II. The kernel theorem and ultradistributions with support in a submanifold, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) 607-628.
- [19] H. Komatsu, Ultradistributions III. Vector-valued ultradistributions and the theory of kernels, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982) 653-718.
- [20] G. Köthe, Topological Vector Spaces I, Springer-Verlag, Berlin, 1969.
- [21] J. Lindenstrauss, A. Pelczynski, Absolutely summing operators in \mathcal{L}_p spaces and their applications, Studia Math. 29 (1968) 275–326.
- [22] J. Lindenstrauss, H.P. Rosenthal, The \mathcal{L}_p spaces, Israel J. Math. 7 (1969) 325–349.
- [23] J. Motos, M.J. Planells, The dual space of $B_{p,k}^c(\Omega, E)$ and applications, preprint.
- [24] J. Motos, M.J. Planells, C.F. Talavera, On weighted L_p -spaces of vector-valued entire analytic functions, preprint.
- [25] M.J. Planells, J. Villegas, On Hörmander–Beurling spaces $B_{p,k}^{c}(\Omega, E)$, J. Appl. Anal. 13 (2007), in press. [26] H.J. Schmeisser, Vector-valued Sobolev and Besov spaces, in: Texts Math., vol. 96, Teubner, Leipzig, 1987, pp. 4–44.
- [27] H.J. Schmeisser, H. Triebel, Topics in Fourier Analysis and Function Spaces, Wiley, Chichester, 1987.
- [28] F. Trèves, Topological Vector Spaces, Distributions, and Kernels, Academic Press, New York, 1967.
- [29] H. Triebel, Über die existenz von Schauderbasen in Sobolev-Besov-Raümen. Isomorphiebeziehungen, Studia Math. 46 (1973) 83-100.
- [30] H. Triebel, Fourier Analysis and Function Spaces, Texts Math., vol. 7, Teubner, Leipzig, 1977.
- [31] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
- [32] H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 1997.
- [33] J. Villegas, On vector-valued Hörmander-Beurling spaces, Extracta Math. 18 (2003) 91-106.
- [34] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: G.I. Zapata (Ed.), Functional Analysis, Holomorphy and Approximation Theory, in: Lect. Notes Pure Appl. Math., vol. 83, 1983, pp. 405-443.