50 research outputs found

    Numerical and experimental analysis of vertical spray control patternators

    Get PDF

    Application of Constrained Optimization Techniques in Optimal Shape Design of a Freezer to Dosing Line Splitter for Ice Cream Production

    Get PDF
    Design of multiple branches splitting of equal mass flow rate in complex rheological flows like ice cream near melting point temperature can be a challenging task. Pulsations in flow rate due to air pumping process and small fluctuations in temperature affecting flow rheology can determine a consistent difference in internal pipe velocity distribution, resulting in a significant difference in the distribution of ice cream dosage. Computational sciences and engineering techniques have allowed a major change in the way products and equipment can be engineered, as a computational model simulating physical processes can be more easily obtained, rather than making prototypes and performing multiple experiments. Among such techniques, optimal shape design (OSD) represents an interesting approach. In OSD, the essential element with respect to classical numerical simulations in fixed geometrical configurations relays on the introduction a certain amount of geometrical degrees of freedom as a part of the unknowns. This implies that the geometry is not completely defined, but part of it is allowed to move dynamically in order to minimize or maximize an objective function. From a mathematical point of view, OSD is a branch of differentiable optimization and more precisely the application of optimal control for distributed systems. OSD is still today numerically difficult to implement, because it relies on a computer intensive activity and moreover because the concept of “optimal” is a compromise between shapes that are good with respect to several criteria. In this work, the applications of a multivariate constrained optimization algorithm is proposed in the case of a mechanical ice cream 1 to 5 splitting system, required to distribute in an evenly way from one freezer into five dosing valves. Results allowed to design a retro-fitting system on an existing production plant reducing the dosing error down to 3% on the average

    Microencapsulation of Phenolic Extracts from Cocoa Shells to Enrich Chocolate Bars

    Get PDF
    Cocoa bean shells were subjected to green extraction technologies, based on the absence of toxic organic solvents, to recover polyphenols; the extract was then encapsulated using a spray dryer and maltodextrin as coating agent. The best conditions observed in the spray drying tests (core-to-coating ratio 1:5; inlet temperature 150 °C; flow rate 6 ml min-1) were applied to produce the microcapsules used to enrich the same cocoa mass as the shells and processed for the preparation of the chocolate bars. Sensory analysis showed no significant differences between enriched chocolate bar and the unenriched reference one, except for the appearance. Both samples were then subjected to accelerated storage tests, at the end of which the polyphenols in the control chocolate bar (0.85 g 100 g-1) were reduced by about 50% (0.42 g 100 g-1), while in the enriched chocolate (1.17 g 100 g-1) by only 22% (0.97 g 100 g-1). The proposed process significantly enriched the chocolate bars with phenolic antioxidants recovered from cocoa waste without increasing the sensations of bitterness and astringency

    Large Eddy Simulation of Turbulent Channel Flows by the Rational LES Model

    Full text link
    The rational large eddy simulation (RLES) model is applied to turbulent channel flows. This approximate deconvolution model is based on a rational (subdiagonal Pade') approximation of the Fourier transform of the Gaussian filter and is proposed as an alternative to the gradient (also known as the nonlinear or tensor-diffusivity) model. We used a spectral element code to perform large eddy simulations of incompressible channel flows at Reynolds numbers based on the friction velocity and the channel half-width Re{sub tau} = 180 and Re{sub tau} = 395. We compared the RLES model with the gradient model. The RLES results showed a clear improvement over those corresponding to the gradient model, comparing well with the fine direct numerical simulation. For comparison, we also present results corresponding to a classical subgrid-scale eddy-viscosity model such as the standard Smagorinsky model.Comment: 31 pages including 15 figure

    Scale-Similar Models for Large-Eddy Simulations

    No full text
    Scale-similar models employ multiple filtering operations to identify the smallest resolved scales, which have been shown to be the most active in the interaction with the unresolved subgrid scales. They do not assume that the principal axes of the strain-rate tensor are aligned with those of the subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses in regions that are well correlated with the locations where large Reynolds stress occurs. In this paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations without models or with the Smagorinsky model are unable to predict nonequilibrium effects. Dynamic models provide an improvement of the results: the adjustment of the coefficient results in more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach [Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging, gave results in the best agreement with the direct simulation and experimental data

    Enhancement and reversal heat transfer by competing modes in jet impingement

    No full text
    A transient numerical analysis for fluid flow and heat transfer from a planar jet impingement on a finite thickness substrate is performed. A discrete heating boundary condition is applied to the substrate’s under side; by including the effect of buoyancy, some assisting or opposing mixed convection configuration can be modelled and regions of momentum dominated, buoyancy dominated and unstable flows can be monitored. For low volumetric flows and small temperature differences, different competitive heat transfer modes can be detected, as conduction may affect heat transfer away from the impact site in the initial times, and flow pattern is driven by the ruling convective mechanism, whether forced or natural. The related flow field and local heat transfer rate are investigated as a function of a variety of geometry configurations, material coupling and thermal-fluid driving factors, for the unitary value of the mixed convection parameter Ri (transitional mixed convection). Normalized heat transfer coefficients along the impinged substrate are reported by a parametric evaluation and may be employed to control the distribution of heat transfer at the given configuration. The inclusion of the conduction mechanism in the analysis confirms that the conjugate effect (heat transfer reversal) cannot be neglected during the initial exposition when an opposing cooling jet configuration is realized, for the largest investigated Re

    Numerical and experimental analysis of vertical spray control patternators

    No full text
    The experimental vertical spray control walls have the purpose of picking up the liquid delivered by trained sprayer for providing the liquid distribution profile in height. Theoretically this should correspond to the ideal profile, which consists in a uniform distribution on the vegetation. If the profile is different from the ideal, a parameter setup is required on the sprayer. Nonetheless, some problems are hidden in the aforementioned statements: i) no wall measures exactly the distribution profile (i.e. the flow through the sections in the vertical plane, parallel to the direction of advancement of the sprayer). Compared to real profile, sensitive errors are introduced: the evaporation of the drops, the deviation of the air flows caused by the sensors panel themselves; by the possibility that the drops bounce on the wall panels, also due to the current of air that can push the liquid veil laterally or upwards, Moreover, everything varies depending on the geometry of the sensors, air velocity, air humidity; ii) no one knows what exactly is the optimal distribution profile. It is often considered as optimal a profile that reflects the amount of leaf area subtended by each section absorber: however, it is evident that the path of the droplets changes according to the sprayer typology (eg. radial-flow or horizontal flows). In this work a combined numerical-experimental approach is adopted, in order to assess some of the aforementioned issues: numerical data obtained by using computational fluid dynamics models are compared and validated with experimental data, in order to assess the reliability of numerical simulations in configurations which are difficult to analyze using an experimental setup
    corecore