The rational large eddy simulation (RLES) model is applied to turbulent
channel flows. This approximate deconvolution model is based on a rational
(subdiagonal Pade') approximation of the Fourier transform of the Gaussian
filter and is proposed as an alternative to the gradient (also known as the
nonlinear or tensor-diffusivity) model. We used a spectral element code to
perform large eddy simulations of incompressible channel flows at Reynolds
numbers based on the friction velocity and the channel half-width Re{sub tau} =
180 and Re{sub tau} = 395. We compared the RLES model with the gradient model.
The RLES results showed a clear improvement over those corresponding to the
gradient model, comparing well with the fine direct numerical simulation. For
comparison, we also present results corresponding to a classical subgrid-scale
eddy-viscosity model such as the standard Smagorinsky model.Comment: 31 pages including 15 figure