465 research outputs found

    Feature extraction and signal processing for nylon DNA microarrays

    Get PDF
    BACKGROUND: High-density DNA microarrays require automatic feature extraction methodologies and softwares. These can be a potential source of non-reproducibility of gene expression measurements. Variation in feature location or in signal integration methodology may be a significant contribution to the observed variance in gene expression levels. RESULTS: We explore sources of variability in feature extraction from DNA microarrays on Nylon membrane with radioactive detection. We introduce a mathematical model of the signal emission and derive methods for correcting biases such as overshining, saturation or variation in probe amount. We also provide a quality metric which can be used qualitatively to flag weak or untrusted signals or quantitatively to modulate the weight of each experiment or gene in higher level analyses (clustering or discriminant analysis). CONCLUSIONS: Our novel feature extraction methodology, based on a mathematical model of the radioactive emission, reduces variability due to saturation, neighbourhood effects and variable probe amount. Furthermore, we provide a fully automatic feature extraction software, BZScan, which implements the algorithms described in this paper

    Analysis of HIV-1 expression level and sense of transcription by high-throughput sequencing of the infected cell.

    Get PDF
    Next-generation sequencing offers an unprecedented opportunity to jointly analyze cellular and viral transcriptional activity without prerequisite knowledge of the nature of the transcripts. SupT1 cells were infected with a vesicular stomatitis virus G envelope protein (VSV-G)-pseudotyped HIV vector. At 24 h postinfection, both cellular and viral transcriptomes were analyzed by serial analysis of gene expression followed by high-throughput sequencing (SAGE-Seq). Read mapping resulted in 33 to 44 million tags aligning with the human transcriptome and 0.23 to 0.25 million tags aligning with the genome of the HIV-1 vector. Thus, at peak infection, 1 transcript in 143 is of viral origin (0.7%), including a small component of antisense viral transcription. Of the detected cellular transcripts, 826 (2.3%) were differentially expressed between mock- and HIV-infected samples. The approach also assessed whether HIV-1 infection modulates the expression of repetitive elements or endogenous retroviruses. We observed very active transcription of these elements, with 1 transcript in 237 being of such origin, corresponding on average to 123,123 reads in mock-infected samples (0.40%) and 129,149 reads in HIV-1-infected samples (0.45%) mapping to the genomic Repbase repository. This analysis highlights key details in the generation and interpretation of high-throughput data in the setting of HIV-1 cellular infection

    Motilitätsstörungen des Ösophagus

    Get PDF
    Zusammenfassung: Motilitätsstörungen des Ösophagus umfassen ein heterogenes Spektrum von Erkrankungen. Primäre Fehlbildungen des Ösophagus sind heute zwar einer verbesserten chirurgischen und gastroenterologischen Therapie zugänglich, führen jedoch zu langfristig persistierender ösophagealer Dysmotilität. Die Achalasie resultiert aus einer gestörten Relaxation des gastroösophagealen Sphinkters. Systemische Erkrankungen können mit einer sekundären ösophagealen Motilitätsstörung einhergehen. Zahlreiche neuromuskuläre Erkrankungen mit viszeraler Manifestation zeigen eine ösophageale Beteiligung. Selten kann eine Aganglionose bis in den Ösophagus reichen. Die wachsende Gruppe der Myopathien schließt metabolische und mitochondriale Störungen ein, deren zunehmende Charakterisierung genetischer Defekte vereinzelt bereits therapeutische Ansätze eröffnet. Infektbedingte Ösophagitiden zeigen besonders bei immunkompromittierten Patienten eine schwere Störung der Motilität. Immunologisch vermittelte Entzündungsprozesse im und um den Ösophagus werden allmählich besser verstanden. Schließlich können seltene Tumoren und tumorartige Läsionen eine Dysmotilität des Ösophagus verursache

    Prevalence and Predictors of Urinary Tract Infection and Severe Malaria Among Febrile Children Attending Makongoro Health Centre in Mwanza City, North-Western Tanzania.

    Get PDF
    In malaria endemic areas, fever has been used as an entry point for presumptive treatment of malaria. At present, the decrease in malaria transmission in Africa implies an increase in febrile illnesses related to other causes among underfives. Moreover, it is estimated that more than half of the children presenting with fever to public clinics in Africa do not have a malaria infection. Thus, for a better management of all febrile illnesses among under-fives, it becomes relevant to understand the underlying aetiology of the illness. The present study was conducted to determine the relative prevalence and predictors of P. falciparum malaria, urinary tract infections and bacteremia among under-fives presenting with a febrile illness at the Makongoro Primary Health Centre, North-Western Tanzania. From February to June 2011, a cross-sectional analytical survey was conducted among febrile children less than five years of age. Demographic and clinical data were collected using a standardized pre-tested questionnaire. Blood and urine culture was done, followed by the identification of isolates using in-house biochemical methods. Susceptibility patterns to commonly used antibiotics were investigated using the disc diffusion method. Giemsa stained thin and thick blood smears were examined for any malaria parasites stages. A total of 231 febrile under-fives were enrolled in the study. Of all the children, 20.3% (47/231, 95%CI, 15.10-25.48), 9.5% (22/231, 95%CI, 5.72-13.28) and 7.4% (17/231, 95%CI, 4.00-10.8) had urinary tract infections, P. falciparum malaria and bacteremia respectively. In general, 11.5% (10/87, 95%CI, 8.10-14.90) of the children had two infections and only one child had all three infections. Predictors of urinary tract infections (UTI) were dysuria (OR = 12.51, 95% CI, 4.28-36.57, P < 0.001) and body temperature (40-41 C) (OR = 12.54, 95% CI, 4.28-36.73, P < 0.001). Predictors of P. falciparum severe malaria were pallor (OR = 4.66 95%CI, 1.21-17.8, P = 0.025) and convulsion (OR = 102, 95% CI, 10-996, P = 0.001). Escherichia coli were the common gram negative isolates from urine (72.3%, 95% CI, 66.50-78.10) and blood (40%, 95%CI, and 33.70-46.30). Escherichia coli from urine were 100% resistant to ampicillin, 97% resistant to co-trimoxazole, 85% resistant to augmentin and 32.4% resistant to gentamicin; and they were 100%, 91.2% and 73.5% sensitive to meropenem, ciprofloxacin and ceftriaxone respectively. Urinary tract infection caused by multi drug resistant Escherichia coli was the common cause of febrile illness in our setting. Improvement of malaria diagnosis and its differential diagnosis from other causes of febrile illnesses may provide effective management of febrile illnesses among children in Tanzania

    Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification

    Get PDF
    BACKGROUND: Decisions concerning malaria treatment depend on species identification causing disease. Microscopy is most frequently used, but at low parasitaemia (<20 parasites/μl) the technique becomes less sensitive and time consuming. Rapid diagnostic tests based on Plasmodium antigen detection do often not allow for species discrimination as microscopy does, but also become insensitive at <100 parasites/μl. METHODS: This paper reports the development of a sensitive and specific real-time Quantitative Nucleic Acid Sequence Based Amplification (real-time QT-NASBA) assays, based on the small-subunit 18S rRNA gene, to identify the four human Plasmodium species. RESULTS: The lower detection limit of the assay is 100 – 1000 molecules in vitro RNA for all species, which corresponds to 0.01 – 0.1 parasite per diagnostic sample (i.e. 50 μl of processed blood). The real-time QT-NASBA was further evaluated using 79 clinical samples from malaria patients: i.e. 11 Plasmodium. falciparum, 37 Plasmodium vivax, seven Plasmodium malariae, four Plasmodium ovale and 20 mixed infections. The initial diagnosis of 69 out of the 79 samples was confirmed with the developed real-time QT-NASBA. Re-analysis of seven available original slides resolved five mismatches. Three of those were initially identified as P. malariae mono-infection, but after re-reading the slides P. falciparum was found, confirming the real-time QT-NASBA result. The other two slides were of poor quality not allowing true species identification. The remaining five discordant results could not be explained by microscopy, but may be due to extreme low numbers of parasites present in the samples. In addition, 12 Plasmodium berghei isolates from mice and 20 blood samples from healthy donors did not show any reaction in the assay. CONCLUSION: Real-time QT-NASBA is a very sensitive and specific technique with a detection limit of 0.1 Plasmodium parasite per diagnostic sample (50 μl of blood) and can be used for the detection, identification and quantitative measurement of low parasitaemia of Plasmodium species, thus making it an effective tool for diagnostic purposes and useful for epidemiological and drug studies

    Multicenter analysis of sputum microbiota in tuberculosis patients.

    Get PDF
    The impact of tuberculosis and of anti-tuberculosis therapy on composition and modification of human lung microbiota has been the object of several investigations. However, no clear outcome has been presented so far and the relationship between M. tuberculosis pulmonary infection and the resident lung microbiota remains vague. In this work we describe the results obtained from a multicenter study of the microbiota of sputum samples from patients with tuberculosis or unrelated lung diseases and healthy donors recruited in Switzerland, Italy and Bangladesh, with the ultimate goal of discovering a microbiota-based biomarker associated with tuberculosis. Bacterial 16S rDNA amplification, high-throughput sequencing and extensive bioinformatic analyses revealed patient-specific flora and high variability in taxon abundance. No common signature could be identified among the individuals enrolled except for minor differences which were not consistent among the different geographical settings. Moreover, anti-tuberculosis therapy did not cause any important variation in microbiota diversity, thus precluding its exploitation as a biomarker for the follow up of tuberculosis patients undergoing treatment
    corecore