423 research outputs found

    Nanoscale friction of biomimetic hair surfaces

    Get PDF
    We investigate the nanoscale friction between biomimetic hair surfaces using chemical colloidal probe atomic force microscopy experiments and nonequilibrium molecular dynamics simulations. In the experiments, friction is measured between water-lubricated silica surfaces functionalised with monolayers formed from either octadecyl or sulfonate groups, which are representative of the surfaces of virgin and ultimately bleached hair, respectively. In the simulations, friction is monitored between coarse-grained model hair surfaces with different levels of chemical damage, where a specified amount of grafted octadecyl groups are randomly replaced with sulfonate groups. The sliding velocity dependence of friction in the simulations can be described using an extended stress-augmented thermally activation model. As the damage level increases in the simulations, the friction coefficient generally increases, but its sliding velocity-dependence decreases. At low sliding velocities, which are closer to those encountered experimentally and physiologically, we observe a monotonic increase of the friction coefficient with damage ratio, which is consistent with our new experiments using biomimetic surfaces and previous ones using real hair. This observation demonstrates that modified surface chemistry, rather than roughness changes or subsurface damage, control the increase in nanoscale friction of bleached or chemically damaged hair. We expect the methods and biomimetic surfaces proposed here to be useful to screen the tribological performance of hair care formulations both experimentally and computationally

    DNA methylation alterations in grade II- and anaplastic pleomorphic xanthoastrocytoma

    Get PDF
    Background: Pleomorphic xanthoastrocytoma (PXA) is a rare WHO grade II tumor accounting for less than 1% of all astrocytomas. Malignant transformation into PXA with anaplastic features, is unusual and correlates with poorer outcome of the patients. Methods: Using a DNA methylation custom array, we have quantified the DNA methylation level on the promoter sequence of 807 cancer-related genes of WHO grade II (n = 11) and III PXA (n = 2) and compared to normal brain tissue (n = 10) and glioblastoma (n = 87) samples. DNA methylation levels were further confirmed on independent samples by pyrosequencing of the promoter sequences. Results: Increasing DNA promoter hypermethylation events were observed in anaplastic PXA as compared with grade II samples. We further validated differential hypermethylation of CD81, HCK, HOXA5, ASCL2 and TES on anaplastic PXA and grade II tumors. Moreover, these epigenetic alterations overlap those described in glioblastoma patients, suggesting common mechanisms of tumorigenesis. Conclusions: Even taking into consideration the small size of our patient populations, our data strongly suggest that epigenome-wide profiling of PXA is a valuable tool to identify methylated genes, which may play a role in the malignant progression of PXA. These methylation alterations may provide useful biomarkers for decision-making in those patients with low-grade PXA displaying a high risk of malignant transformation

    DNA methylation alterations in grade II- and anaplastic pleomorphic xanthoastrocytoma

    Get PDF
    BACKGROUND: Pleomorphic xanthoastrocytoma (PXA) is a rare WHO grade II tumor accounting for less than 1% of all astrocytomas. Malignant transformation into PXA with anaplastic features, is unusual and correlates with poorer outcome of the patients. METHODS: Using a DNA methylation custom array, we have quantified the DNA methylation level on the promoter sequence of 807 cancer-related genes of WHO grade II (n = 11) and III PXA (n = 2) and compared to normal brain tissue (n = 10) and glioblastoma (n = 87) samples. DNA methylation levels were further confirmed on independent samples by pyrosequencing of the promoter sequences. RESULTS: Increasing DNA promoter hypermethylation events were observed in anaplastic PXA as compared with grade II samples. We further validated differential hypermethylation of CD81, HCK, HOXA5, ASCL2 and TES on anaplastic PXA and grade II tumors. Moreover, these epigenetic alterations overlap those described in glioblastoma patients, suggesting common mechanisms of tumorigenesis. CONCLUSIONS: Even taking into consideration the small size of our patient populations, our data strongly suggest that epigenome-wide profiling of PXA is a valuable tool to identify methylated genes, which may play a role in the malignant progression of PXA. These methylation alterations may provide useful biomarkers for decision-making in those patients with low-grade PXA displaying a high risk of malignant transformation

    A simulation analysis of an influenza vaccine production plant in areas of high humanitarian flow. A preliminary study for the region of norte de santander (colombia)

    Get PDF
    The production of vaccines of biological origin presents a tremendous challenge for re-searchers. In this context, animal cell cultures are an excellent alternative for the isolation and production of biologicals against several viruses, since they have an affinity with viruses and a great capacity for their replicability. Different variables have been studied to know the system’s ideal parameters, allowing it to obtain profitable and competitive products. Consequently, this work fo-cuses its efforts on evaluating an alternative for producing an anti‐influenza biological from MDCK cells using SuperPro Designer v8.0 software. The process uses the DMEN culture medium supple-mented with nutrients as raw material for cell development; the MDCK cells were obtained from a potential scale‐up with a final working volume of 500 L, four days of residence time, inoculum volume of 10%, and continuous working mode with up to a total of 7400 h/Yr of work. The scheme has the necessary equipment for the vaccine’s production, infection, and manufacture with yields of up to 416,698 units/h. In addition, it was estimated to be economically viable to produce recom-binant vaccines with competitive prices of up to 0.31 USD/unit

    A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors

    Get PDF
    Whereas accepted models of tumorigenesis exist for genetic lesions, the timing of epigenetic alterations in cancer is not clearly understood. We have analyzed the profile of aberrations in DNA methylation occurring in cells lines and primary tumors of one of the best-characterized mouse carcinogenesis systems, the multistage skin cancer progression model. Initial analysis using high-performance capillary electrophoresis and immunolocalization revealed a loss of genomic 5-methylcytosine associated with the degree of tumor aggressiveness. Paradoxically, this occurs in the context of a growing number of hypermethylated CpG islands of tumor suppressor genes at the most malignant stages of carcinogenesis. We have observed this last phenomenon using two approaches, a candidate gene approach, studying genes with well-known methylation-associated silencing in human tumors, and a mouse cDNA microarray expression analysis after treatment with DNA demethylating drugs. The transition from epithelial to spindle cell morphology is particularly associated with major epigenetic alterations, such as E-cadherin methylation, demethylation of the Snail promoter, and a decrease of the global DNA methylation. Analysis of data obtained from the cDNA microarray strategy led to the identification of new genes that undergo methylation-associated silencing and have growth-inhibitory effects, such as the insulin-like growth factor binding protein-3. Most importantly, all of the above genes were also hypermethylated in human cancer cell lines and primary tumors, underlining the value of the mouse skin carcinogenesis model for the study of aberrant DNA methylation events in cancer cells.Health (FIS) and Science (ID) Departments of the Spanish Government and the Asociacion Espanola contra el Cancer (AECC)

    Velocity-Based Heuristic Evaluation for Path Planning and Vehicle Routing for Victim Assistance in Disaster Scenarios

    Get PDF
    Published in "Robot 2019: Fourth Iberian Robotics Conference. Advances in Intelligent Systems and Computing, Vol 1093. Silva M., LuĂ­s Lima J., Reis L., Sanfeliu A., Tardioli D. (eds)" published by Springer, Cham. Avalaible online at: https://doi.org/10.1007.987-3-030-36150-1_10Natural and human-made disasters require effective victim assistance and last-mile relief supply operations with teams of ground vehicles. In these applications, digital elevation models (DEM) can provide accurate knowledge for safe vehicle motion planning but grid representation results in very large search graphs. Furthermore, travel time, which becomes a crucial cost optimization criterion, may be affected by inclination and other challenging terrain characteristics. In this paper, our goal is to evaluate a search heuristic function based on anisotropic vehicle velocity restrictions for building the cost matrix required for multi-vehicle routing on natural terrain and disaster sites. The heuristic is applied to compute the fastest travel times between every pair of matrix elements by means of a path planning algorithm. The analysis is based on a case study on the ortophotographic-based DEM of natural terrain with different target points, where theUniversidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. This work has received funding from the national project RTI2018-093421-B-I00 (Spanish Government), the University of Malaga (AndalucĂ­a Tech) and the grant BES-2016-077022 of the European Social Fund

    A soft clustering approach to detect socio-ecological landscape boundaries using bayesian networks

    Get PDF
    Detecting socio-ecological boundaries in traditional rural landscapes is very important for the planning and sustainability of these landscapes. Most of the traditional methods to detect ecological boundaries have two major shortcomings: they are unable to include uncertainty, and they often exclude socio-economic information. This paper presents a new approach, based on unsupervised Bayesian network classifiers, to find spatial clusters and their boundaries in socio-ecological systems. As a case study, a Mediterranean cultural landscape was used. As a result, six socio-ecological sectors, following both longitudinal and altitudinal gradients, were identified. In addition, different socio-ecological boundaries were detected using a probability threshold. Thanks to its probabilistic nature, the proposed method allows experts and stakeholders to distinguish between different levels of uncertainty in landscape management. The inherent complexity and heterogeneity of the natural landscape is easily handled by Bayesian networks. Moreover, variables from different sources and characteristics can be simultaneously included. These features confer an advantage over other traditional techniques

    A simulation analysis of a microalgal-production plant for the transformation of inland-fisheries wastewater in sustainable feed

    Get PDF
    The present research evaluates the simulation of a system for transforming inland-fisheries wastewater into sustainable fish feed using DesignerÂź software. The data required were obtained from the experimental cultivation of Chlorella sp. in wastewater supplemented with N and P. According to the results, it is possible to produce up to 11,875 kg/year (31.3 kg/d) with a production cost of up to 18 (USD/kg) for dry biomass and 0.19 (USD/bottle) for concentrated biomass. Similarly, it was possible to establish the kinetics of growth of substrate-dependent biomass with a maximum production of 1.25 g/L after 15 days and 98% removal of available N coupled with 20% of P. It is essential to note the final production efficiency may vary depending on uncontrollable variables such as climate and quality of wastewater, among others

    Insulinotropic Effect of the Non-Steroidal Compound STX in Pancreatic ÎČ-Cells

    Get PDF
    The non-steroidal compound STX modulates the hypothalamic control of core body temperature and energy homeostasis. The aim of this work was to study the potential effects of STX on pancreatic ÎČ-cell function. 1–10 nM STX produced an increase in glucose-induced insulin secretion in isolated islets from male mice, whereas it had no effect in islets from female mice. This insulinotropic effect of STX was abolished by the anti-estrogen ICI 182,780. STX increased intracellular calcium entry in both whole islets and isolated ÎČ-cells, and closed the KATP channel, suggesting a direct effect on ÎČ-cells. When intraperitoneal glucose tolerance test was performed, a single dose of 100 ”g/kg body weight STX improved glucose sensitivity in males, yet it had a slight effect on females. In agreement with the effect on isolated islets, 100 ”g/kg dose of STX enhanced the plasma insulin increase in response to a glucose load, while it did not in females. Long-term treatment (100 ”g/kg, 6 days) of male mice with STX did not alter body weight, fasting glucose, glucose sensitivity or islet insulin content. Ovariectomized females were insensitive to STX (100 ”g/kg), after either an acute administration or a 6-day treatment. This long-term treatment was also ineffective in a mouse model of mild diabetes. Therefore, STX appears to have a gender-specific effect on blood glucose homeostasis, which is only manifested after an acute administration. The insulinotropic effect of STX in pancreatic ÎČ-cells is mediated by the closure of the KATP channel and the increase in intracellular calcium concentration. The in vivo improvement in glucose tolerance appears to be mostly due to the enhancement of insulin secretion from ÎČ-cells
    • 

    corecore