34 research outputs found
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources
The State of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusion of cow-associated methods a logical choice. Because the performance of these methods has been shown to change based on geography and/or local animal feeding practices, laboratory comparisons are needed to determine which assays are best suited for implementation. We describe the performance characterization of two end-point PCR assays (CF128 and CF193) and five real-time quantitative PCR (qPCR) assays (Rum2Bac, BacR, BacCow, CowM2,andCowM3)reported to be associated with either ruminant or cattle feces. Each assay was tested against a blinded set of 38 reference challenge filters (19 duplicate samples) containing fecal pollution from 12 different sources suspected to impact water quality. The abundance of each host-associated genetic marker was measured for qPCR-based assays in both target and non-target animals and compared to quantities of total DNA mass, wet mass of fecal material, as well as Bacteroidales, and enterococci determined by 16S rRNA qPCR and culture-based approaches (enterococci only).Ruminant- and cow-associated genetic markers were detected in all filters containing a cattle fecal source. However, some assays cross reacted with non-target pollution sources. A large amount of variability was evident across laboratories when protocols were not fixed suggesting that protocol standardization will be necessary for widespread implementation. Finally, performance metrics indicate that the cattle-associatedCowM2qPCR method combined with either the BacR orRum2Bacruminantassociated methods are most suitable for implementation
Processing of Carbon Fibers Reinforced Mg Matrix Composites Via Pre-infiltration with Al
Mg-C composites offer a suitable alternative to Al alloys while allowing for a significant weight reduction, but their production can be impaired by the poor wettability of C substrates by Mg. In the present work, a new 'liquid' processing route has been investigated. By making use of the well-known effect of a pre-treatment of the C fibres with an aqueous solution of K2ZrF6 in favouring spontaneous wetting of C with Al, C yarns have been pre-impregnated with Al and the feasibility of further using them as reinforcements in Mg matrix composites has been assessed. More particularly, it has thus been shown that, under the thermal conditions involved in the process, C fibres did not suffer damage due to chemical reaction with Al, and also that special care should be taken in order to control the surface condition of the pre-infiltrated yarns.C-Mg MMC Winoma
Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study
A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman®, HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources. The assay results were assessed for presence/absence of the human markers and also quantitatively while varying the following: 1) classification of samples that were detected but not quantifiable (DNQ) as positive or negative; 2) reference fecal sample concentration unit of measure (such as culturable indicator bacteria, wet mass, total DNA, etc); and 3) human fecal source type (stool, sewage or septage). Assay performance using presence/absence metrics was found to depend on the classification of DNQ samples. The assays that performed best quantitatively varied based on the fecal concentration unit of measure and laboratory protocol. All methods were consistently more sensitive to human stools compared to sewage or septage in both the presence/absence and quantitative analysis. Overall, HF183 Taqman® was found to be the most effective marker of human fecal contamination in this California-based study
Prognosis and tumor biology of pancreatic cancer patients with isolated lung metastases: translational results from the German multicenter AIO-YMO-PAK-0515 study
Background: Pulmonary metastasis (M1-PUL) as first site of dissemination in pancreatic ductal adenocarcinoma (PDAC) is a rare event and may define a distinct biological subgroup. Patients and methods: Arbeitsgemeinschaft Internistische Onkologie-Young Medical Oncologists-Pankreas-0515 study (AIO-YMO-PAK-0515) was a retrospective German multicenter study investigating clinical and molecular characteristics of M1-PUL PDAC patients; 115 M1-PUL PDAC patients from 7 participating centers were included. Clinical characteristics and potential prognostic factors were defined within the M1-PUL cohort. Archival tumor samples were analyzed for Her2/neu, HNF1A and KRT81 expression. Additionally, messenger RNA (mRNA) expression analysis (using a 770-gene immune profiling panel) was carried out in the M1-PUL and in a control cohort (M1-ANY). Results: Median overall survival in the entire M1-PUL cohort was 20 months; the most favorable prognosis (median survival: 28 months) was observed in the subgroup of 66 PDAC patients with metachronous lung metastases after previous curative-intent surgery. The number of metastatic lesions, uni- or bilateral lung involvement as well as metastasectomy were identified as potential prognostic factors. Her2/neu expression and PDAC subtyping (by HNF1A and KRT81) did not differ between the M1-PUL and the M1-ANY cohort. mRNA expression analysis revealed significant differentially expressed genes between both cohorts: CD63 and LAMP1 were among the top 20 differentially expressed genes and were identified as potential mediators of organotropism and favorable survival outcome of M1-PUL patients. Conclusion: M1-PUL represents a clinically favorable cohort in PDAC patients. Site of relapse might already be predetermined at the time of surgery and could potentially be predicted by gene expression profiling