43 research outputs found

    Transmission of visual data over wireless fading channel in real-time systems based on superposition coding scheme

    Get PDF
    Real-time visual applications are among the most important requirements in the next generation wireless communication systems. In these applications, the transmitted data comprise different layers with different importance levels based on their influence on the reception quality. Furthermore, the real-time transmission nature of these applications makes them sensitive to data losses and transmission delay. To address these issues, an efficient superposition adaptive modulation and coding system, for the optimal system performance, is proposed in this paper. The proposed system switches its modulation and coding scheme adaptively to select the suitable modulation order and coding rate that best match with the instantaneous channel condition. The channel state information is estimated in receiver and fed back to transmitter. In such method, better performances in both data rate and bit error rate (BER) can be attained. Here, the source data are divided into different priority layers with different importance. Each layer bit stream is sent with specific error protection level against channel corruption. The highest error protection level is assigned to the highest priority layer, and vice versa. The modulated bit streams of all layers are then superimposed together and transmitted via Rayleigh fading channel. At the receiver side, a specific multi-stage decoding receiver is used to reconstruct the source data which demodulates the layers in the order of their priorities. Simulation results show that the proposed system provides up to 18 dB SNR and 46 % data rate gains, respectively, compared to the traditional BPSK scheme at BER of 10−4

    Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases.

    Get PDF
    Inflammatory bowel diseases, which include Crohn's disease and ulcerative colitis, affect several million individuals worldwide. Crohn's disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study's infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi'omics Database ( http://ibdmdb.org ), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    New results on unequal error protection using LDPC codes

    No full text

    The Export Strategies Alignment and Export Performance

    No full text
    This study is tried to reply this question; would the existence of the strategic alignment in the international marketing domain be caused export performance improvement? After that a Decision Support System (DSS) about export strategy alignment is presented. This research from the view of objective is a casual research and because of the research presents a model in the strategic level for export strategies, it is a developmental research. The study applied in the 100 influential companies which had export for three years. The level of analysis is organization. The method of data gathering for export performance is external secondary data (Industrial Management Org. reports about IMI100) and for determining the degree of strategic alignment the strategic reference points (SRP's) theory is applied. The result shows that: (1) Higher export strategies alignment caused increasing in the export performance, (2) Fuzzy measurements of strategic alignment and export performance caused a more accurate statement for reality, (3) In this research the utility of the fuzzy model to present a DSS for management has approved

    Nonuniform Error Correction Using Low-Density Parity-Check Codes

    No full text

    Findings From a Nursing Care Audit Based on the Nursing Process: A Descriptive Study

    No full text
    Background: Although using the nursing process improves nursing care quality, few studies have evaluated nursing performance in accordance with nursing process steps either nationally or internationally. Objectives: This study aimed to audit nursing care based on a nursing process model. Patients and Methods: This was a cross-sectional descriptive study in which a nursing audit checklist was designed and validated for assessing nurses’ compliance with nursing process. A total of 300 nurses from various clinical settings of Tehran university of medical sciences were selected. Data were analyzed using descriptive and inferential statistics, including frequencies, Pearson correlation coefficient and independent samples t-tests. Results: The compliance rate of nursing process indicators was 79.71 ± 0.87. Mean compliance scores did not significantly differ by education level and gender. However, overall compliance scores were correlated with nurses’ age (r = 0.26, P = 0.001) and work experience (r = 0.273, P = 0.001). Conclusions: Nursing process indicators can be used to audit nursing care. Such audits can be used as quality assurance tools

    Energy-Aware Adaptive Rate And Resolution Sampling Of Spectrally Sparse Signals Leveraging Vcma-Mtj Devices

    No full text
    This paper devises a novel adaptive framework for the energy-aware acquisition of spectrally sparse signals. The adaptive quantized compressive sensing (CS) techniques, beyond-complementary metal-oxide-semiconductor (CMOS) hardware architecture, and corresponding algorithms which utilize them have been designed concomitantly to minimize the overall cost of signal acquisition. First, a spin-based adaptive intermittent quantizer (AIQ) is developed to facilitate the realization of the adaptive sampling technique. Next, a framework for smart and adaptive determination of the sampling rate and quantization resolution based on the instantaneous signal and hardware constraints is introduced. Finally, signal reconstruction algorithms which process the quantized CS samples are investigated. Simulation results indicate that an AIQ architecture using a spin-based quantizer incurs only 20.98 μW power dissipation on average using 22-nm technology for 1-8 bits uniform output. Furthermore, in order to provide 8-bit quantization resolution, 85.302 μW maximum power dissipation is attained. Our results indicate that the proposed AIQ design provides up to 6.18-mW power savings on average compared to other adaptive rate and resolution CMOS-based CS analog-to-digital converter designs. In addition, the mean square error values achieved by the simulation results confirm efficient reconstruction of the signal based on the proposed approach
    corecore