550 research outputs found

    Direct Rivaroxaban-Induced Factor Xa Inhibition Proves to be Cardioprotective in Rats

    Get PDF
    BACKGROUND: Acute myocardial infarction is a leading cause of death worldwide. Though highly beneficial, reperfusion of myocardium is associated with reperfusion injury. While indirect inhibition of Factor Xa has been shown to attenuate myocardial ischemia-reperfusion (I/R) injury, the underlying mechanism remains unclear. Our study sought to evaluate the effect of rivaroxaban (RIV), a direct inhibitor of Factor Xa, on myocardial I/R injury and determine its cellular targets. EXPERIMENTAL APPROACH: We used a rat model of 40-minutes coronary ligation followed by reperfusion. RIV (3 mg/Kg) was given per os 1 hour before reperfusion. Infarct size and myocardial proteic expression of survival pathways were assessed at 120 and 30 minutes of reperfusion, respectively. Plasmatic levels of P-selectin and von Willebrand factor were measured at 60 minutes of reperfusion. Cellular RIV effects were assessed using hypoxia-reoxygenation (H/R) models on human umbilical vein endothelial cells and on rat cardiomyoblasts (H9c2 cell line). KEY RESULTS: RIV decreased infarct size by 21% (42.9% vs. 54.2% in RIV-treated rats and controls respectively, p < 0.05) at blood concentrations similar to human therapeutic (387.7 ± 152.3 ng/mL) levels. RIV had no effect on H/R-induced modulation of endothelial phenotype, nor did it alter myocardial activation of RISK and SAFE pathways at 30 min after reperfusion. However, RIV exerted a cytoprotective effect on H9c2 cells submitted to H/R. CONCLUSION: RIV decreased myocardial I/R injury in rats at concentrations similar to human therapeutic ones. This protection was not associated with endothelial phenotype modulation but rather with potential direct cytoprotection on cardiomyocytes

    Water retention in unsaturated soils subjected to wetting and drying cycles

    Get PDF
    The suction is an essential parameter to describe and understand the behavior of unsaturated soils. The ability of unsaturated soils to retain water is quantified by determining the water retention curves (WRC), which express the hydraulic behavior of porous materials such as soil. These curves are determined by subjecting samples to several drying and wetting cycles. The curve during drying path is located above the wetting curve, developing a hysteresis phenomenon [1], and value of content water at a given suction value depends on the path used to reach this point. The aim of this paper is to present a study on the hydraulic behavior of soil, water retention capacity due to drying and wetting cycles, pointing out the hydro-mechanical behavior of unsaturated soils. In the first part, the effect of physical and mechanical properties of soil [32] (initial void ratio, particle size, cohesion, density...) on the water retention is presented. In the second part, a complete numerical model was developed, based on the empirical model of Van Genuchten [18], to model the two boundary curves, and the experimental scanning data were bestfitted using the same theory of Mualem model [13]. This complete model requires 4 parameters. This model has been validated with experimental data on different type of soils: sand [10], [34], U.S. Silica F-95 sand [30]

    Remote Ischemic Conditioning Influences Mitochondrial Dynamics

    Get PDF
    Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy to protect the heart against ischemia-reperfusion (I/R) injury. The mechanisms by which remote ischemic conditioning (RIC) is protective are to date unknown, yet a well-accepted theory holds that the mitochondria play a central role. Mitochondria are dynamic organelles that undergo fusion and fission. Interventions that decrease mitochondrial fission or increase mitochondrial fusion have been associated with reduced I/R injury. However, whether RIPC influences mitochondrial dynamics or not has yet to be ascertained.We sought to determine the role played by mitochondrial dynamics in RIPC-induced cardioprotection. Male adult rats exposed in vivo to myocardial I/R were assigned to one of two groups, either undergoing 40 min of myocardial ischemia followed by 120 min of reperfusion (MI group) or four 5-min cycles of limb ischemia interspersed by 5 min of limb reperfusion, immediately prior to myocardial ischemia and 120 min of reperfusion (MI+RIPC group). After reperfusion, infarct size was assessed and myocardial tissue was analyzed by Western blot and electron microscopy. RIPC induced smaller infarct size (-28%), increased mitochondrial fusion protein OPA1, and preserved mitochondrial morphology. These findings suggest that mitochondrial dynamics play a role in the mechanisms of RIPC-induced cardioprotection

    Serial magnetic resonance imaging based assessment of the early effects of an ACE inhibitor on postinfarction left ventricular remodeling in rats

    Get PDF
    In vivo assessment of treatment efficacy on postinfarct left ventricular (LV) remodeling is crucial for experimental studies. We examined the technical feasibility of serial magnetic resonance imaging (MRI) for monitoring early postinfarct remodeling in rats. MRI studies were performed with a 7-Tesla unit, 1, 3, 8, 15, and 30 days after myocardial infarction (MI) or sham operation, to measure LV mass, volume, and the ejection fraction (EF). Three groups of animals were analyzed: sham-operated rats (n = 6), MI rats receiving lisinopril (n = 11), and MI rats receiving placebo (n = 8). LV dilation occurred on day 3 in both MI groups. LV end-systolic and end-diastolic volumes were significantly lower in lisinopril-treated rats than in placebo-treated rats at days 15 and 30. EF was lower in both MI groups than in the sham group at all time points, and did not differ between the MI groups during follow-up. Less LV hypertrophy was observed in rats receiving lisinopril than in rats receiving placebo at days 15 and 30. We found acceptable within- and between-observer agreement and an excellent correlation between MRI and ex vivo LV mass (r = 0.96; p < 0.001). We demonstrated the ability of MRI to detect the early beneficial impact of angiotensin-converting enzyme (ACE) inhibitors on LV remodeling. Accurate and noninvasive, MRI is the tool of choice to document response to treatment targeting postinfarction LV remodeling in rats

    Grandes branquiópodos (Crustacea: Branchiopoda: Anostraca, Notostraca) en la provincia de Málaga (España) (año hidrológico 2012/2013)

    Get PDF
    Grans branquiòpodes (Crustacea, Branchiopoda: Anostraca, Notostraca) a la província de Màlaga, Espanya (any hidrològic 2012/2013) S'enumeren les cites d'una campanya de mostratge de grans branquiòpodes portada a terme a la província de Màlaga (Andalusia, sud d'Espanya) que ha permès la detecció de cinc espècies (Branchipus cortesi, Chirocephalus diaphanus, Streptocephalus torvicornis, Triops mauritanicus aggr. i Phallocryptus spinosa) en 90 masses d'aigua mostrejades.Large branchiopods (Crustacea, Branchiopoda, Anostraca, Notostraca) from Málaga province, Spain (2012/2013 hydrological year) This paper presents the occurrence of the large branchiopods detected during a survey carried out in the province of Málaga (Andalusia, southern Spain). Five species (Branchipus cortesi, Chirocephalus diaphanus, Streptocephalus torvicornis, Triops mauritanicus aggr. and Phallocryptus spinosa) were recorded at 90 sampled wetlands.Se enumeran las citas de una campaña de muestreo de grandes branquiópodos realizada en la provincia de Málaga (Andalucía, sur de España) que ha permitido la detección de cinco especies (Branchipus cortesi, Chirocephalus diaphanus, Streptocephalus torvicornis, Triops mauritanicus aggr. y Phallocryptus spinosa) en 90 masas de agua muestreadas

    P-positive definite matrices and stability of non conservative systems

    Get PDF
    International audienceThe bifurcation problem of constrained non-conservative systems with non symmetric stiffness matrices is investigated. It leads to study the subset Dp,nD_{p,n} of Mn(R)ℳn(ℝ) of the so called pp-positive definite matrices (1≤p≤n1 ≤ p ≤ n). The main result (D1,n⊂Dp,nD_{1,n} ⊂ D_{p,n}) is proved, the reciprocal result is investigated and the consequences on the stability of elastic nonconservative systems are highlighted

    Myocardial reperfusion injury management: erythropoietin compared with postconditioning

    Get PDF
    Ischemic postconditioning (IPost) and erythropoietin (EPO) have been shown to attenuate myocardial reperfusion injury using similar signaling pathways. The aim of this study was to examine whether EPO is as effective as IPost in decreasing postischemic myocardial injury in both Langendorff-isolated-heart and in vivo ischemia-reperfusion rat models. Rat hearts were subjected to 25 min ischemia, followed by 30 min or 2 h of reperfusion in the isolated-heart study. Rats underwent 45 min ischemia, followed by 24 h of reperfusion in the in vivo study. In both studies, the control group (n = 12; ischemia-reperfusion only) was compared with IPost (n = 16; 3 cycles of 10 s reperfusion/10 s ischemia) and EPO (n = 12; 1,000 IU/kg) at the onset of reperfusion. The following resulted. First, in the isolated hearts, IPost or EPO significantly improved postischemic recovery of left ventricular developed pressure. EPO induced better left ventricular developed pressure than IPost at 30 min of reperfusion (73.18 ± 10.23 vs. 48.11 ± 7.92 mmHg, P < 0.05). After 2 h of reperfusion, the infarct size was significantly lower in EPO-treated hearts compared with IPost and control hearts (14.36 ± 0.60%, 19.11 ± 0.84%, and 36.21 ± 4.20% of the left ventricle, respectively; P < 0.05). GSK-3β phosphorylation, at 30 min of reperfusion, was significantly higher with EPO compared with IPost hearts. Phosphatidylinositol 3-kinase and ERK1/2 inhibitors abolished both EPO- and IPost-mediated cardioprotection. Second, in vivo, IPost and EPO induced an infarct size reduction compared with control (40.5 ± 3.6% and 28.9 ± 3.1%, respectively, vs. 53.7 ± 4.3% of the area at risk; P < 0.05). Again, EPO decreased significantly more infarct size and transmurality than IPost (P < 0.05). In conclusion, with the use of our protocols, EPO showed better protective effects than IPost against reperfusion injury through higher phosphorylation of GSK-3β

    Prevention of Ventricular Arrhythmias With Sarcoplasmic Reticulum Ca2+ ATPase Pump Overexpression in a Porcine Model of Ischemia Reperfusion

    Get PDF
    Background— Ventricular arrhythmias are life-threatening complications of heart failure and myocardial ischemia. Increased diastolic Ca2+ overload occurring in ischemia leads to afterdepolarizations and aftercontractions that are responsible for cellular electric instability. We inquired whether sarcoplasmic reticulum Ca2+ ATPase pump (SERCA2a) overexpression could reduce ischemic ventricular arrhythmias by modulating Ca2+ overload.Methods and Results— SERCA2a overexpression in pig hearts was achieved by intracoronary gene delivery of adenovirus in the 3 main coronary arteries. Homogeneous distribution of the gene was obtained through the left ventricle. After gene delivery, the left anterior descending coronary artery was occluded for 30 minutes to induce myocardial ischemia followed by reperfusion. We compared this model with a model of permanent coronary artery occlusion. Twenty-four–hour ECG Holter recordings showed that SERCA2a overexpression significantly reduced the number of episodes of ventricular tachycardia after reperfusion, whereas no significant difference was found in the occurrence of sustained or nonsustained ventricular tachycardia and ventricular fibrillation in pigs undergoing permanent occlusion. Conclusions— We show that Ca2+ cycling modulation using SERCA2a overexpression reduces ventricular arrhythmias after ischemia-reperfusion. Strategies that modulate postischemic Ca2+ overload may have clinical promise for the treatment of ventricular arrhythmias

    Three-dimensional MRI assessment of regional wall stress after acute myocardial infarction predicts postdischarge cardiac events

    Get PDF
    PURPOSE: To determine the prognostic significance of systolic wall stress (SWS) after reperfused acute myocardial infarction (AMI) using MRI. MATERIALS AND METHODS: A total of 105 patients underwent MRI 7.8 +/- 4.2 days after AMI reperfusion. SWS was calculated by using a three-dimensional (3D) MRI approach to left ventricular (LV) wall thickness and to the radius of curvature. Between hospital discharge and the end of follow-up, an average of 4.1 +/- 1.7 years after AMI, 19 patients experienced a major cardiac event, including cardiac death, nonfatal reinfarction or heart failure (18.3%). RESULTS: The results were mainly driven by heart failure outcome. In univariate analysis the following factors were predictive of postdischarge major adverse cardiac events: 1) at the time of AMI: higher heart rate, previous calcium antagonist treatment, in-hospital congestive heart failure, proximal left anterior descending artery (LAD) occlusion, a lower ejection fraction, higher maximal ST segment elevation before reperfusion, and ST segment reduction lower than 50% after reperfusion; 2) MRI parameters: higher LV end-systolic volume, lower ejection fraction, higher global SWS, higher SWS in the infarcted area (SWS MI) and higher SWS in the remote myocardium (SWS remote). In the final multivariate model, only SWS MI (odds ratio [OR]: 1.62; 95% confidence interval [CI]: 1.01-2.60; P = 0.046) and SWS remote (OR: 2.17; 95% CI: 1.02-4.65; P = 0.046) were independent predictors. CONCLUSION: Regional SWS assessed by means of MRI a few days after AMI appears to be strong predictor of postdischarge cardiac events, identifying a subset of at risk patients who could qualify for more aggressive management
    • …
    corecore