121 research outputs found

    Predicting Delay in Goal-Directed Action: An Experience Sampling Approach Uncovering Within-Person Determinants Involved in the Onset of Academic Procrastination Behavior

    Get PDF
    Academic procrastination involves the delayed implementation of actions required to fulfill study-related tasks. These behavioral delays are thought to result from momentary failures in self-regulation (i.e., within-person processes). Most previous studies focused on the role of trait-based individual differences in students’ procrastination tendencies. Little is known about the within-person processes involved in the occurrence of procrastination behavior in real-life academic situations. The present study applied an event-based experience sampling approach to investigate whether the onset of task-specific delay behavior can be attributed to unfavorable changes in students’ momentary appraisals of tasks (value, aversiveness, effort, expectations of success), which may indicate failures in self-regulation arise between critical phases of goal-directed action. University students (N = 75) used an electronic diary over eight days to indicate their next days’ intentions to work on academic tasks and their task-specific appraisals (n = 582 academic tasks planned). For each task, a second query requested the next day determined whether students’ task-related appraisals changed and whether they implemented their intention on time or delayed working on the respective task (n = 501 completed task-specific measurements). Students’ general procrastination tendency was assessed at baseline using two established self-report questionnaires. Stepwise two-level logistic regression analyses revealed that within-person changes in task-related appraisals that reflected a devaluation of the study-related tasks increased the risk for an actual delay. The risk to delay decreased when students maintained a positive attitude toward the task. Students’ general procrastination tendency did not predict individual differences in their task-specific delay behavior. We discuss these findings in light of the growing effort to understand the within-person processes that contribute to induce procrastination behavior under real-life academic conditions and illustrate how this knowledge can benefit the design of tasks and instructions that support students’ self-regulation to their best

    Specificity of emotion sequences in borderline personality disorder compared to posttraumatic stress disorder, bulimia nervosa, and healthy controls: an e-diary study

    Get PDF
    Background: Patients with borderline personality disorder (BPD) exhibit dysregulated emotion sequences in daily life compared to healthy controls (HC). Empirical evidence regarding the specificity of these findings is currently lacking. Methods: To replicate dysregulated emotion sequences in patients with BPD and to investigate the specificity of the sequences, we used e-diaries of 43 female patients with BPD, 28 patients with posttraumatic stress disorder (PTSD), 20 patients with bulimia nervosa (BN), and 28 HC. To capture the rapid dynamics of emotions, we prompted participants every 15 min over a 24-h period to assess their current perceived emotions. We analyzed group differences in terms of activation, persistence, switches, and down-regulation of emotion sequences. Results: By comparing patients with BPD to HC, we replicated five of the seven previously reported dysregulated emotion sequences, as well as 111 out of 113 unaltered sequences. However, none of the previously reported dysregulated emotion sequences exhibited specificity, i.e., none revealed higher frequencies compared to the PTSD group or the BN group. Beyond these findings, we revealed a specific finding for patients with BN, as they most frequently switched from anger to disgust. Conclusions: Replicating previously found dysregulated and unaltered emotional sequences strengthens the significance of emotion sequences. However, the lack of specificity points to emotion sequences as transdiagnostic features

    Improving Motor Activity Assessment in Depression: Which Sensor Placement, Analytic Strategy and Diurnal Time Frame Are Most Powerful in Distinguishing Patients from Controls and Monitoring Treatment Effects

    Get PDF
    Background Abnormalities in motor activity represent a central feature in major depressive disorder. However, measurement issues are poorly understood, limiting the use of objective measurement of motor activity for diagnostics and treatment monitoring. Methods To improve measurement issues, especially sensor placement, analytic strategies and diurnal effects, we assessed motor activity in depressed patients at the beginning (MD; n=27) and after anti-depressive treatment (MD-post; n=18) as well as in healthy controls (HC; n=16) using wrist- and chest-worn accelerometers. We performed multiple analyses regarding sensor placements, extracted features, diurnal variation, motion patterns and posture to clarify which parameters are most powerful in distinguishing patients from controls and monitoring treatment effects. Results Whereas most feature-placement combinations revealed significant differences between groups, acceleration (wrist) distinguished MD from HC (d=1.39) best. Frequency (vertical axis chest) additionally differentiated groups in a logistic regression model (R2=0.54). Accordingly, both amplitude (d=1.16) and frequency (d=1.04) showed alterations, indicating reduced and decelerated motor activity. Differences between MD and HC in gestures (d=0.97) and walking (d=1.53) were found by data analysis from the wrist sensor. Comparison of motor activity at the beginning and after MD-treatment largely confirms our findings. Limitations Sample size was small, but sufficient for the given effect sizes. Comparison of depressed in-patients with non-hospitalized controls might have limited motor activity differences between groups. Conclusions Measurement of wrist-acceleration can be recommended as a basic technique to capture motor activity in depressed patients as it records whole body movement and gestures. Detailed analyses showed differences in amplitude and frequency denoting that depressed patients walked less and slower

    Entwicklung und Evaluierung eines Stressbewältigungsprogramms für Studierende im Hochschulsetting = Development and evaluation of a stress management program for students

    Get PDF
    Nicht erst seit den Studierendenprotesten werden die Themen Stress und Belastung an Universitäten mannigfaltig thematisiert. Im Gegensatz zur enormen Bedeutung ist die Anzahl der evaluierten Stresstrainings, die speziell für Studierende entwickelt wurden, bestenfalls überschaubar. Ziel der vorliegenden Studie war es, ein auf die Bedürfnisse der Studierenden zugeschnittenes multimodales Stressbewältigungsprogramm zu entwickeln und auf seine Wirksamkeit zu überprüfen. Die Evaluierung des siebenwöchigen Trainings erfolgte durch ein randomisiertes Wartelisten-Kontrollgruppendesign an 63 Studierenden. Insgesamt zeigt sich eine deutliche Verbesserung (signifikante Interaktion Gruppe*Zeit) bezüglich einer Vielzahl gesundheitsrelevanter Parameter: Stressbelastung, Prüfungsangst, psychosomatische Beschwerden, depressive Symptomatik, Perfektionismus, Selbstwert, Erholungsfähigkeit, Beanspruchungs-Erholungs-Bilanz und Selbstmanagementfähigkeiten/Ressourcen. Zusammenfassend erscheint das Trainingsprogramm, mit seiner innovativen zielgruppenspezifischen Konzeption, als erfolgsversprechender Baustein einer präventiven Gesundheitsförderung im Hochschulsetting

    An analytical model of transducer array arrangement for guided wave excitation and propagation on cylindrical structures

    Get PDF
    Ultrasonic guided wave (GW) inspection is one of the non-destructive testing (NDT) techniques available for the engineering structures. Compared with other NDT techniques, guided waves can propagate a long distance with a relatively high sensitivity to defects in the structure. In order to increase the performance for pipe inspections to meet higher requirements under different conditions, the optimisation of piezoelectric transducer array design is still a need, as the technique is currently subject to a complex analysis due to wide number of guided wave modes generated. This can be done by optimising the transducer array design. In this paper, it is described an analytical mode of a set of piezoelectric transducer arrays upon torsional wave mode T(0,1) excitation in a tubular structure. The proposed analytical model for predicting signal propagation is validated by using finite element analysis in ABAQUS and three-dimensional laser vibrometer experiments for transducer array characterisations. The proposed analytical model works well and very fast for simulating transducer excitation and wave propagation along cylindrical structures. This will significantly reduce the complexity of guided wave analysis, enhancing effectively the structural health of structures and subsequently reducing the industry maintenance cost

    Association of Locomotor Activity During Sleep Deprivation Treatment With Response

    Get PDF
    Disrupted circadian rhythms and sleep patterns are frequently observed features of psychiatric disorders, and especially mood disorders. Sleep deprivation treatment (SD) exerts rapid but transient antidepressant effects in depressed patients and has gained recognition as a model to study quick-acting antidepressant effects. It is of interest how locomotor activity patterns during SD might be associated with and potentially predict treatment response. The present study is an analysis of locomotor activity data, previously collected over a 24 h period, to examine the night of SD (Trautmann et al. 2018) as mood disorder patients suffering from a depressive episode (n = 78; after exclusions n = 59) underwent SD. In this exploratory analysis, the associations between response to SD, locomotor activity, and subjective mood during the 24 h period of SD were explored. Higher levels of activity overall were observed in non-responders (n = 18); in particular, non-responders moved more during the evening of SD until midnight and remained high thereafter. In contrast, activity in responders (n = 41) decreased during the evening and increased in the morning. Subjective mood was not found to be associated with locomotor activity. The window of data available in this analysis being limited, additional data from before and after the intervention are required to fully characterize the results observed. The present results hint at the possible utility of locomotor activity as a predictor and early indicator of treatment response, and suggest that the relationship between SD and locomotor activity patterns should be further investigated

    Analyzing subcomponents of affective dysregulation in borderline personality disorder in comparison to other clinical groups using multiple e-diary datasets

    Get PDF
    Background: Affective dysregulation is widely regarded as being the core problem in patients with borderline personality disorder (BPD). Moreover, BPD is the disorder mainly associated with affective dysregulation. However, the empirical confirmation of the specificity of affective dysregulation for BPD is still pending. We used a validated approach from basic affective science that allows for simultaneously analyzing three interdependent components of affective dysregulation that are disturbed in patients with BPD: homebase, variability, and attractor strength (return to baseline). Methods: We applied two types of multilevel models on two e-diary datasets to investigate group differences regarding three subcomponents between BPD patients (n =43; n =51) and patients with posttraumatic stress disorder (PTSD; n= 28) and those with bulimia nervosa (BN; n= 20) as clinical control groups in dataset 1, and patients with panic disorder (PD; n= 26) and those with major depression (MD; n =25) as clinical control groups in dataset 2. In addition, healthy controls (n= 28; n= 40) were included in the analyses. In both studies, e-diaries were used to repeatedly collect data about affective experiences during participants’ daily lives. In study 1 a high-frequency sampling strategy with assessments in 15 min-intervals over 24 h was applied, whereas the assessments occurred every waking hour over 48 h in study 2. The local ethics committees approved both studies, and all participants provided written informed consent. Results: In contradiction to our hypotheses, BPD patients did not consistently show altered affective dysregulation compared to the clinical patient groups. The only differences in affective dynamics in BPD patients emerged with regard to one of three subcomponents, affective homebase. However, these results were not even consistent. Conversely, comparing the patients to healthy controls revealed a pattern of more negative affective homebases, higher levels of affective variability, and (partially) reduced returns to baseline in the patient groups. Conclusions: Our results indicate that affective dysregulation constitutes a transdiagnostic mechanism that manifests in similar ways in several different mental disorders. We point out promising prospects that might help to elucidate the common and distinctive mechanisms that underlie several different disorders and that should be addressed in future studies

    Markers of criticality in phase synchronization

    Get PDF
    The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating rapid task-dependent shifts toward and away from synchronous states that abolish LRTCs
    • …
    corecore