5,429 research outputs found
Anisotropic thermal emission from magnetized neutron stars
The thermal emission from isolated neutron stars is not well understood. The
X-ray spectrum is very close to a blackbody but there is a systematic optical
excess flux with respect to the extrapolation to low energy of the best
blackbody fit. This fact, in combination with the observed pulsations in the
X-ray flux, can be explained by anisotropies in the surface temperature
distribution.We study the thermal emission from neutron stars with strong
magnetic fields in order to explain the origin of the anisotropy. We find
(numerically) stationary solutions in axial symmetry of the heat
transportequations in the neutron star crust and the condensed envelope. The
anisotropy in the conductivity tensor is included consistently. The presence of
magnetic fields of the expected strength leads to anisotropy in the surface
temperature. Models with toroidal components similar to or larger than the
poloidal field reproduce qualitatively the observed spectral properties and
variability of isolated neutron stars. Our models also predict spectral
features at energies between 0.2 and 0.6 keV.Comment: 18 pages, 19 figures, version accepted for publication in A&
Pulsar kicks by anisotropic neutrino emission from quark matter
We discuss an acceleration mechanism for pulsars out of their supernova
remnants based on asymmetric neutrino emission from quark matter in the
presence of a strong magnetic field. The polarized electron spin fixes the
neutrino emission from the direct quark Urca process in one direction along the
magnetic field. We calculate the magnetic field strength which is required to
polarize the electron spin as well as the required initial proto-neutron star
temperature for a successfull acceleration mechanism. In addition we discuss
the neutrino mean free paths in quark as well as in neutron matter which turn
out to be very small. Consequently, the high neutrino interaction rates will
wash out the asymmetry in neutrino emission. As a possible solution to this
problem we take into account effects from colour superconductivity.Comment: 6 pages, 3 figures, poster contribution at the conference "Nuclear
Physics in Astrophysics III",Dresden,March 26-31,200
Abelianization of First Class Constraints
We show that a given set of first class constraints becomes abelian if one
maps each constraint to the surface of other constraints. There is no
assumption that first class constraints satisfy a closed algebra. The explicit
form of the projection map is obtained at least for irreducible first class
constraints. Using this map we give a method to obtain gauge fixing conditions
such that the set of abelian first class constraints and gauge fixing
conditions satisfy the symplectic algebra.Comment: To appear in PL
Canonical Noether symmetries and commutativity properties for gauge systems
For a dynamical system defined by a singular Lagrangian, canonical Noether
symmetries are characterized in terms of their commutation relations with the
evolution operators of Lagrangian and Hamiltonian formalisms. Separate
characterizations are given in phase space, in velocity space, and through an
evolution operator that links both spaces.Comment: 22 pages; some references updated, an uncited reference deleted,
minor style change
Improving the OCL Semantics Definition by Applying Dynamic Meta Modeling and Design Patterns
OCL is a standard specification language, which will probably be supported by most software modeling tools in the near future. Hence, it is important for OCL to have a solid formal foundation, for its syntax and its semantic definition. Currently, OCL is being formalized by metamodels expressed in MOF, complemented by well formedness rules written in the own OCL. This recursive definition not only brings about formal problems, but also puts obstacles in language understanding. On the other hand, the OCL semantics metamodel presents quality weaknesses due to the fact that certain object-oriented design rules (patterns) were not obeyed in their construction. The aim of the proposal presented in this article is to improve the definition for the OCL semantics metamodel by applying GoF patterns and the dynamic metamodeling technique. Such proposal avoids circularity in OCL definition and increases its extensibility, legibility and accuracy
Composition operators on weighted Banach spaces of a tree
We study composition operators on the weighted Banach spaces of an infinite
tree. We characterize the bounded and the compact operators, as well as
determine the operator norm and the essential norm. In addition, we study the
isometric composition operators
Bipolar querying of valid-time intervals subject to uncertainty
Databases model parts of reality by containing data representing properties of real-world objects or concepts. Often, some of these properties are time-related. Thus, databases often contain data representing time-related information. However, as they may be produced by humans, such data or information may contain imperfections like uncertainties. An important purpose of databases is to allow their data to be queried, to allow access to the information these data represent. Users may do this using queries, in which they describe their preferences concerning the data they are (not) interested in. Because users may have both positive and negative such preferences, they may want to query databases in a bipolar way. Such preferences may also have a temporal nature, but, traditionally, temporal query conditions are handled specifically. In this paper, a novel technique is presented to query a valid-time relation containing uncertain valid-time data in a bipolar way, which allows the query to have a single bipolar temporal query condition
- …