33 research outputs found

    Integrating virtual reality and gis tools for geological mapping, data collection and analysis: An example from the metaxa mine, santorini (Greece)

    Get PDF
    In the present work we highlight the effectiveness of integrating different techniques and tools for better surveying, mapping and collecting data in volcanic areas. We use an Immersive Virtual Reality (IVR) approach for data collection, integrated with Geographic Information System (GIS) analysis in a well-known volcanological site in Santorini (Metaxa mine), a site where volcanic processes influenced the island’s industrial development, especially with regard to pumice mining. Specifically, we have focused on: (i) three-dimensional (3D) high-resolution IVR scenario building, based on Structure from Motion photogrammetry (SfM) modeling; (ii) subsequent geological survey, mapping and data collection using IVR; (iii) data analysis, e.g., calculation of extracted volumes, as well as production of new maps in a GIS environment using input data directly from the IVR survey; and finally, (iv) presentation of new outcomes that highlight the importance of the Metaxa Mine as a key geological and volcanological geosite

    A Structural and Geophysical Approach to the Study of Fractured Aquifers in the Scansano-Magliano in Toscana Ridge, Southern Tuscany, Italy

    Get PDF
    Fresh water availability has recently become a serious concern in the Italian Apennines, as various activities rely on a predictable supply. Along the Scansano-Magliano ridge in southern Tuscany the situation is further complicated by contamination of the nearby alluvial aquifers. Aquifers locally consist of thin fractured reservoirs, generally within low-permeability formations, and it can be difficult to plan the exploitation of resources based on conventional techniques. An integrated study based on geological investigate the link between tectonics and groundwater circulation and to better define the hydrological model. After the regional identification of fault and fracture patterns, a major structure was investigated in detail to accurately map its spatial position and to understand the geometry and properties of the associated aquifer and assess its exploitation potential. The subsurface around the fault zone was clearly imaged through Ground Probing Radar, 2D and 3D resistivity tomography, and 3D shallow seismic surveys. The vertical and horizontal contacts between the different geological units of the Ligurian and Tuscan series were resolved with a high degree of spatial accuracy. 3D high-resolution geophysical imaging proved to be a very effective means for characterising small-scale fractured reservoirs

    A structural and geophysical approach to the study of fractured aquifers in the Scansano-Magliano in Toscana Ridge, southern Tuscany, Italy

    Get PDF
    Fresh water availability has recently become a serious concern in the Italian Apennines, as various activities rely on a predictable supply. Along the ridge between Scansano and Magliano in Toscana, in southern Tuscany, the situation is further complicated by contamination of the nearby alluvial aquifers. Aquifers locally consist of thin fractured reservoirs, generally within low-permeability formations, and it can be difficult to plan the exploitation of resources based on conventional techniques. An integrated study based on geological data investigated the link between tectonics and groundwater circulation, to better define the hydrological model. After the regional identification of fault and fracture patterns, a major structure was investigated in detail to accurately map its spatial position and to understand the geometry and properties of the associated aquifer and assess its exploitation potential. The subsurface around the fault zone was clearly imaged using ground probing radar, two-dimensional and three-dimensional resistivity tomography, and three-dimensional shallow seismic surveys. The vertical and horizontal contacts between the different geological units of the Ligurian and Tuscan series were resolved with a high degree of spatial accuracy. Three-dimensional high-resolution geophysical imaging proved to be a very effective means of characterising small-scale fractured reservoirs

    The Achievement of a Decentralized Water Management Through Stakeholder Participation: An Example from the Drôme River Catchment Area in France (1981–2008)

    Get PDF
    International audienceDifferent water Acts (e.g., the European Water Framework Directive) and stakeholders involved in aquatic affairs have promoted integrated river basin management (IRBM) over recent decades. However, few studies have provided feedback on these policies. The aim of the current article is to fill this gap by exploring how local newspapers reflect the implementation of a broad public participation within a catchment of France known for its innovation with regard to this domain. The media coverage of a water management strategy in the Drôme watershed from 1981 to 2008 was investigated using a content analysis and a geographic information system (GIS). We sought to determine what public participation and decentralized decision-making can be in practice. The results showed that this policy was integrated because of its social perspective, the high number of involved stakeholders, the willingness to handle water issues, and the local scale suitable for participation. We emphasized the prominence of the watershed scale guaranteed by the local water authority. This area was also characterized by compromise, arrangements, and power dynamics on a fine scale. We examined the most politically engaged writings regarding water management, which topics each group emphasized, and how the groups agreed and disagreed on issues based on their values and context. The temporal pattern of participation implementation was progressive but worked by fits and starts

    Extensometer-based monitoring of active deformation at the Khoko landslide (Jivari, Georgia)

    No full text
    There are several ways to monitor the evolution of a mass movement in mountainous areas, such as a landslide: from inclinometers, helpful in measuring deep deformation, to piezometers, for determining water level within the unstable mass, to electronic and manual extensometers, suitable for assessing local deformation. Here, we document the results of an extensometer-based campaign of measurements carried out in Georgia from 2016 to 2019, at the giant Khoko landslide, located on the southern slope of the Greater Caucasus. The campaign was conducted in the framework of a NATO-funded project, aimed at identifying geohazards affecting the Enguri artificial reservoir and the related hydroelectrical plant. Our results, which are meant to be integrated by the more accurate GPS-measurements performed during the NATO-supported project, indicate that the Khoko landslide is indeed active, and its displacements appear to be controlled by variations in hydraulic load, in turn induced by lake oscillations and, although to a minor extent, by rainfall

    Fissural volcanism, polygenetic volcanic fields, and crustal thickness in the Payen Volcanic Complex on the central Andes foreland (Mendoza, Argentina)

    No full text
    Shield volcanoes, caldera-bearing stratovolcanoes, and monogenetic cones compose the large fissural Payen Volcanic Complex, located in the Andes foreland between latitude 35°S and 38°S. The late Pliocene-Pleistocene and recent volcanic activity along E-W trending eruptive fissures produced basaltic lavas showing a within-plate geochemical signature. The spatial distribution of fractures and monogenetic vents is characterized by self-similar clustering with well defined power law distributions. Vents have average spacing of 1.27 km and fractal exponent D = 1.33 defined in the range 0.7–49.3 km. The fractal exponent of fractures is 1.62 in the range 1.5–48.1 km. The upper cutoffs of fractures and vent fractal distributions (about 48–49 km) scale to the crustal thickness in the area, as derived from geophysical data. This analysis determines fractured media (crust) thickness associated with basaltic retroarc eruptions. We propose that the Payen Volcanic Complex was and is still active under an E-W crustal shortening regime

    Landsat 5 TM images and DEM in lithologic mapping of Payen Volcanic Field (Mendoza Province, Argentina)

    No full text
    Satellite image such as Landsat 5 TM scene provides excellent representation of Earth and synoptic view of large geographic areas in different band combination. Landsat TM images allow automatic and semi-automatic classification of land cover, nevertheless the software frequently may have some difficulties in distinguishing between similar radiometric surfaces. In this case, the use of Digital Elevation Model (DEM) can be an important tool to identifydifferent surface covers. In this study, several False Color Composite (FCC) of Landsat 5 TM Image, DEM and the respective draped image of them, were used to delineate lithological boundaries and tectonic features of regional significance of the Payen Volcanic Field (PVF). PVF is a Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina) characterized by many composite basaltic lava flow fields. The necessity to identify different lava flows with the same composition, and then with same spectral features, allows to highlight the improvement of synergic use of TM images and shaded DEM in the visual interpretation. Information obtained from Satellite data and DEM have been compared with previous geological maps and transferred into a topographical base map. Based on these data a new lithological map at 1:100.000 scale has been presented.Published11-241.10. TTC - Telerilevamento3.5. Geologia e storia dei vulcani ed evoluzione dei magmi5.3. TTC - Banche dati vulcanologicheN/A or not JCRreserve

    Landsat 5 TM images and DEM in lithologic mapping of Payen Volcanic Field (Mendoza Province, Argentina)

    No full text
    Satellite image such as Landsat 5 TM scene provides excellent representation of Earth and synoptic view of large geographic areas in different band combination. Landsat TM images allow automatic and semi-automatic classification of land cover, nevertheless the software frequently may have some difficulties in distinguishing between similar radiometric surfaces. In this case, the use of Digital Elevation Model (DEM) can be an important tool to identifydifferent surface covers. In this study, several False Color Composite (FCC) of Landsat 5 TM Image, DEM and the respective draped image of them, were used to delineate lithological boundaries and tectonic features of regional significance of the Payen Volcanic Field (PVF). PVF is a Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina) characterized by many composite basaltic lava flow fields. The necessity to identify different lava flows with the same composition, and then with same spectral features, allows to highlight the improvement of synergic use of TM images and shaded DEM in the visual interpretation. Information obtained from Satellite data and DEM have been compared with previous geological maps and transferred into a topographical base map. Based on these data a new lithological map at 1:100.000 scale has been presented
    corecore