55 research outputs found

    Whole-genome sequencing to determine origin of multinational outbreak of Sarocladium kiliense bloodstream infections

    Get PDF
    We used whole-genome sequence typing (WGST) to investigate an outbreak of Sarocladium kiliense bloodstream infections (BSI) associated with receipt of contaminated antinausea medication among oncology patients in Colombia and Chile during 2013-2014. Twenty-five outbreak isolates (18 from patients and 7 from medication vials) and 11 control isolates unrelated to this outbreak were subjected to WGST to elucidate a source of infection. All outbreak isolates were nearly indistinguishable (≤5 single-nucleotide polymorphisms), and >21,000 single-nucleotide polymorphisms were identified from unrelated control isolates, suggesting a point source for this outbreak. S. kiliense has been previously implicated in healthcare-related infections; however, the lack of available typing methods has precluded the ability to substantiate point sources. WGST for outbreak investigation caused by eukaryotic pathogens without reference genomes or existing genotyping methods enables accurate source identification to guide implementation of appropriate control and prevention measures. © 2016, Centers for Disease Control and Prevention (CDC). All rights reserved

    Preparing for low surface brightness science with the Vera C. Rubin Observatory:Characterization of tidal features from mock images

    Get PDF
    Tidal features in the outskirts of galaxies yield unique information about their past interactions and are a key prediction of the hierarchical structure formation paradigm. The Vera C. Rubin Observatory is poised to deliver deep observations for potentially millions of objects with visible tidal features, but the inference of galaxy interaction histories from such features is not straightforward. Utilizing automated techniques and human visual classification in conjunction with realistic mock images produced using the NewHorizon cosmological simulation, we investigate the nature, frequency, and visibility of tidal features and debris across a range of environments and stellar masses. In our simulated sample, around 80 per cent of the flux in the tidal features around Milky Way or greater mass galaxies is detected at the 10-yr depth of the Legacy Survey of Space and Time (30-31 mag arcsec-2), falling to 60 per cent assuming a shallower final depth of 29.5 mag arcsec-2. The fraction of total flux found in tidal features increases towards higher masses, rising to 10 per cent for the most massive objects in our sample (M* ∼1011.5 M⊙). When observed at sufficient depth, such objects frequently exhibit many distinct tidal features with complex shapes. The interpretation and characterization of such features varies significantly with image depth and object orientation, introducing significant biases in their classification. Assuming the data reduction pipeline is properly optimized, we expect the Rubin Observatory to be capable of recovering much of the flux found in the outskirts of Milky Way mass galaxies, even at intermediate redshifts (z < 0.2)

    A Software Framework for Rapid Prototyping of Run-Time Systems for Mobile Calculi

    No full text
    We describe the architecture and the implementation of the Mikado software framework, that we call IMC (Implementing Mobile Calculi). The framework aims at providing the programmer with primitives to design and implement run-time systems for distributed process calculi. The paper describes the four main components of abstract machines for mobile calculi (node topology, naming and binding, communication protocols and mobility) that have been implemented as Java packages. The paper also contains the description of a prototype implementation of a run-time system for the Distributed Pi-Calculus relying on the presented framework
    corecore