54 research outputs found

    Calcite distribution and orientation in the tergite exocuticle of the isopods porcellio scaber and armadillidium vulgare (Oniscidea, Crustacea) - A combined FE-SEM, polarized SCm-RSI and EBSD study

    Get PDF
    The crustacean cuticle is a bio-composite consisting of hierarchically organized chitin-protein fibres, reinforced with calcite, amorphous calcium carbonate and phosphates. Comparative studies revealed that the structure and composition of tergite cuticle of terrestrial isopods is adapted to the habitat of the animals, and to their behavioural patterns to avoid predation. In this contribution we use FE-SEM, polarized SCm-RSI and EBSD to investigate micro- and nano-patterns of mineral phase distribution and crystal orientation within the tergite cuticle of the two terrestrial isopod species Armadillidium vulgare and Porcellio scaber. The results show that the proximal regions of the exocuticle contain both calcite and ACC, with ACC located within the pore canals. Calcite forms hierarchically organised mesocrystalline aggregates of similar crystallographic orientation. Surprisingly, c-axis orientation preference is horizontal in regard to the local cuticle surface for both species, in contrast to mollusc and brachiopod shell structures in which the c-axis is always perpendicular to the shell surface. The overall sharpness of calcite crystal orientation is weak compared to that of mollusc shells. However, there are considerable differences in texture sharpness between the two isopod species. In the thick cuticle of the slow-walking A. vulgare calcite is more randomly oriented resulting in more isotropic mechanical properties of the cuticle. In contrast, the rather thin and more flexible cuticle of the fast- running P. scaber texture sharpness is stronger with a preference of c-axis orientation being parallel to the bilateral symmetry-plane of the animal, leading to more anisotropic mechanical properties of the cuticle. These differences may represent adaptations to different external and/or internal mechanical loads the cuticle has to resist during predatory attempts

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    HSPG-Deficient Zebrafish Uncovers Dental Aspect of Multiple Osteochondromas

    Get PDF
    Multiple Osteochondromas (MO; previously known as multiple hereditary exostosis) is an autosomal dominant genetic condition that is characterized by the formation of cartilaginous bone tumours (osteochondromas) at multiple sites in the skeleton, secondary bursa formation and impingement of nerves, tendons and vessels, bone curving, and short stature. MO is also known to be associated with arthritis, general pain, scarring and occasional malignant transformation of osteochondroma into secondary peripheral chondrosarcoma. MO patients present additional complains but the relevance of those in relation to the syndromal background needs validation. Mutations in two enzymes that are required during heparan sulphate synthesis (EXT1 or EXT2) are known to cause MO. Previously, we have used zebrafish which harbour mutations in ext2 as a model for MO and shown that ext2−/− fish have skeletal defects that resemble those seen in osteochondromas. Here we analyse dental defects present in ext2−/− fish. Histological analysis reveals that ext2−/− fish have very severe defects associated with the formation and the morphology of teeth. At 5 days post fertilization 100% of ext2−/− fish have a single tooth at the end of the 5th pharyngeal arch, whereas wild-type fish develop three teeth, located in the middle of the pharyngeal arch. ext2−/− teeth have abnormal morphology (they were shorter and thicker than in the WT) and patchy ossification at the tooth base. Deformities such as split crowns and enamel lesions were found in 20% of ext2+/− adults. The tooth morphology in ext2−/− was partially rescued by FGF8 administered locally (bead implants). Our findings from zebrafish model were validated in a dental survey that was conducted with assistance of the MHE Research Foundation. The presence of the malformed and/or displaced teeth with abnormal enamel was declared by half of the respondents indicating that MO might indeed be also associated with dental problems

    Metabolic responses to high pCO2 conditions at a CO2 vent site in juveniles of a marine isopod species assemblage

    Get PDF
    We are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high pCO2. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO2 areas may be useful to inform our understanding of their adaptive significance. Furthermore, little is known about the physiological responses of marine invertebrate juveniles to high pCO2, despite the fact they are known to be sensitive to other stressors, often acting as bottlenecks for future species success. We conducted an in situ transplant experiment using juveniles of isopods found living inside and around a high pCO2 vent (Ischia, Italy): the CO2 'tolerant' Dynamene bifida and 'sensitive' Cymodoce truncata and Dynamene torelliae. This allowed us to test for any generality of the hypothesis that pCO2 sensitive marine invertebrates may be those that experience trade-offs between energy metabolism and cellular homoeostasis under high pCO2 conditions. Both sensitive species were able to maintain their energy metabolism under high pCO2 conditions, but in C. truncata this may occur at the expense of [carbonic anhydrase], confirming our hypothesis. By comparison, the tolerant D. bifida appeared metabolically well adapted to high pCO2, being able to upregulate ATP production without recourse to anaerobiosis. These isopods are important keystone species; however, given they differ in their metabolic responses to future pCO2, shifts in the structure of the marine ecosystems they inhabit may be expected under future ocean acidification conditions

    Skeletal deformations in medaka Oryzias latipes visualized by synchrotron radiation microcomputer tomography

    No full text
    Synchrotron radiation micro-computer tomography (SRmicroCT) offers the possibility to investigate biomineralized structures in high detail. Two animals of adult medaka fish (Oryzias latipes) were analyzed by SRmicroCT with a resolution of 6.55 microm: the wild-type animal was normally developed whereas the second animal showed an idiopathic deformation of the cranial and axial skeleton. These deformations could be followed on the macro- and on the microscale (i.e., on the level of the individual ribs and fin bones). Our study clearly demonstrates that SRmicroCT is an excellent technique to study alterations in the skeletal structure of fish in detail
    corecore