294 research outputs found

    "Quand j’avais 7 ans je mai tué " puis je suis devenu schizophrène"

    No full text
    International audiencePsychotic dccompensation can bc perceived as family bonds being attac-ked. It can be limited to a traumatic event like the news of a ncw-born's death or an unbearable crime committed by a child. Parents then give up investing in their child who then goes through a narcissistic "fracture". The authors show from a case study, how this overall disillusion process can bring about paranoid expériences in life.La décompensation psychotique peut être appréhendée comme une attaque des liens familiaux. Elle peut être reliée à un événement traumatique tel l'annonce de la mort d'un nouveau-né ou d'un acte intolérable commis par un enfant. Les parents désinvestissent l'enfant qui vit une "fracture" narcis-sique. Les auteurs montrent à partir d'un cas clinique, comment ce mouve-ment de désillusion massif peut déclencher des vécus paranoïdes

    Comparing Team Interactions in Traditional and BIM-Lean Design Management

    Full text link
    [EN] There is qualitative evidence showing that design teams that use BIM-lean management have a higher level of interaction than design teams that do not use this management approach. However, there is no quantitative empirical evidence of this higher level of interaction. Therefore, the objective of this paper is to present quantitative empirical evidence of the differences among the various types of interactions of a design team. Two case studies were analyzed, and their design management was assessed from a lean BIM perspective while their team interactions were assessed using social network analysis (SNA). To achieve the aim of this paper, four steps were performed: (1) case study selection; (2) description of the design management of the projects from the lean design management and BIM perspectives; (3) assessment of design team interaction; and (4) comparison using SNA. The results show that the project that applied BIM-lean management exhibited higher levels of interactions among its design team members than the traditional team; transparent, orderly, and standardized information flows; a collaborative, trusting, and learning environment; and commitment management. None of these interaction elements were visible in the project that did not apply BIM-lean management. It is suggested that an analysis be performed on a representative sample of projects in the future so that conclusive statistical inferences could be made.This research was funded by Fondecyt Regular, grant number 1210769 and ANID, grant number CONICYT-PCHA/National Doctorate/2018-21180884. The APC was paid by the Pontificia Universidad Católica de Valparaíso.Herrera, RF.; Mourgues, C.; Alarcón, LF.; Pellicer, E. (2021). Comparing Team Interactions in Traditional and BIM-Lean Design Management. Buildings. 11(10):1-25. https://doi.org/10.3390/buildings11100447S125111

    An Assessment of Lean Design Management Practices in Construction Projects

    Full text link
    [EN] Evidence exists for the application of lean management practices in the design process. However, there is no systematic review of this type of practice that links the design management practices to the lean construction principles. There is no tool to assess the level of use of lean design management practices in construction projects either. Therefore, this paper aims to assess the lean management practices that are performed at the design phase of construction projects. The research was divided into a literature review of design management practices; a validation of lean design management practices with a practice¿principle relationship, based on an expert survey; the devolvement of a tool (questionnaire) to evaluate the lean design management practices; and an assessment in 64 construction projects (coherence, reliability, correlation, and descriptive analysis). It is concluded that evidence exists for the implementation of 19 lean design management practices. These practices are grouped into three categories: stakeholder management, planning and control, and problem solving and decision making. Additionally, in the assessment of the 64 projects, it can be observed that the lean design management practices are at initial levels of implementations, so there is a significant development gap. This research proposes a tool to assess management practices in the design phase of construction projects; then, the study identifies implementations gaps, it provides benchmarks with other projects, and it improves the design process through a taxonomy of lean design management practices.This research was funded by CONICYT grant number PCHA/National Doctorate/2018-21180884 for funding the graduate research of Herrera, and the financial support by FONDECYT (1181648).Herrera, RF.; Mourgues, C.; Alarcon, LF.; Pellicer, E. (2019). An Assessment of Lean Design Management Practices in Construction Projects. Sustainability. 12(1):1-18. https://doi.org/10.3390/su12010019S118121Baiden, B. K., Price, A. D. F., & Dainty, A. R. J. (2006). The extent of team integration within construction projects. International Journal of Project Management, 24(1), 13-23. doi:10.1016/j.ijproman.2005.05.001Aziz, R. F., & Hafez, S. M. (2013). Applying lean thinking in construction and performance improvement. Alexandria Engineering Journal, 52(4), 679-695. doi:10.1016/j.aej.2013.04.008Knotten, V., Lædre, O., & Hansen, G. K. (2017). Building design management – key success factors. Architectural Engineering and Design Management, 13(6), 479-493. doi:10.1080/17452007.2017.1345718Salvatierra, J. L., Gálvez, M. Á., Bastías, F., Castillo, T., Herrera, R. F., & Alarcón, L. F. (2019). Developing a benchmarking system for architecture design firms. Engineering, Construction and Architectural Management, 26(1), 139-152. doi:10.1108/ecam-05-2018-0211Simons, D., & Taylor, D. (2007). Lean thinking in the UK red meat industry: A systems and contingency approach. International Journal of Production Economics, 106(1), 70-81. doi:10.1016/j.ijpe.2006.04.003Perez, C., de Castro, R., Simons, D., & Gimenez, G. (2010). Development of lean supply chains: a case study of the Catalan pork sector. Supply Chain Management: An International Journal, 15(1), 55-68. doi:10.1108/13598541011018120Lamming, R. (1996). Squaring lean supply with supply chain management. International Journal of Operations & Production Management, 16(2), 183-196. doi:10.1108/01443579610109910Arkader, R. (2001). The perspective of suppliers on lean supply in a developing country context. Integrated Manufacturing Systems, 12(2), 87-93. doi:10.1108/09576060110384280Kestle, L., Potangaroa, R., & Storey, B. (2011). Integration of Lean Design and Design Management and its Influence on the Development of a Multidisciplinary Design Management Model for Remote Site Projects. Architectural Engineering and Design Management, 7(2), 139-153. doi:10.1080/17452007.2011.582336Mesa, H. A., Molenaar, K. R., & Alarcón, L. F. (2016). Exploring performance of the integrated project delivery process on complex building projects. International Journal of Project Management, 34(7), 1089-1101. doi:10.1016/j.ijproman.2016.05.007Gambatese, J. A., Pestana, C., & Lee, H. W. (2017). Alignment between Lean Principles and Practices and Worker Safety Behavior. Journal of Construction Engineering and Management, 143(1), 04016083. doi:10.1061/(asce)co.1943-7862.0001209Salgin, B., Arroyo, P., & Ballard, G. (2016). Explorando la relación entre los métodos de diseño lean y la reducción de residuos de construcción y demolición: tres estudios de caso de proyectos hospitalarios en California. Revista ingeniería de construcción, 31(3), 191-200. doi:10.4067/s0718-50732016000300005Sacks, R., Koskela, L., Dave, B. A., & Owen, R. (2010). Interaction of Lean and Building Information Modeling in Construction. Journal of Construction Engineering and Management, 136(9), 968-980. doi:10.1061/(asce)co.1943-7862.0000203Herrera, R. F., Sanz, M. A., Montalbán-Domingo, L., García-Segura, T., & Pellicer, E. (2019). Impact of Game-Based Learning on Understanding Lean Construction Principles. Sustainability, 11(19), 5294. doi:10.3390/su11195294Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104Affinity Diagrams—Learn How to Cluster and Bundle Ideas and Factshttps://www.interaction-design.org/literature/article/affinity-diagrams-learn-how-to-cluster-and-bundle-ideas-and-factsCarnevalli, J. A., & Miguel, P. C. (2008). Review, analysis and classification of the literature on QFD—Types of research, difficulties and benefits. International Journal of Production Economics, 114(2), 737-754. doi:10.1016/j.ijpe.2008.03.006Mok, K. Y., Shen, G. Q., & Yang, J. (2015). Stakeholder management studies in mega construction projects: A review and future directions. International Journal of Project Management, 33(2), 446-457. doi:10.1016/j.ijproman.2014.08.007Molwus, J. J., Erdogan, B., & Ogunlana, S. (2017). Using structural equation modelling (SEM) to understand the relationships among critical success factors (CSFs) for stakeholder management in construction. Engineering, Construction and Architectural Management, 24(3), 426-450. doi:10.1108/ecam-10-2015-0161Ko, C.-H., & Chung, N.-F. (2014). Lean Design Process. Journal of Construction Engineering and Management, 140(6), 04014011. doi:10.1061/(asce)co.1943-7862.0000824Hansen, G. K., & Olsson, N. O. E. (2011). Layered Project–Layered Process: Lean Thinking and Flexible Solutions. Architectural Engineering and Design Management, 7(2), 70-84. doi:10.1080/17452007.2011.582331Freire, J., & Alarcón, L. F. (2002). Achieving Lean Design Process: Improvement Methodology. Journal of Construction Engineering and Management, 128(3), 248-256. doi:10.1061/(asce)0733-9364(2002)128:3(248)KOSKELA, L., HUOVILA, P., & LEINONEN, J. (2002). DESIGN MANAGEMENT IN BUILDING CONSTRUCTION: FROM THEORY TO PRACTICE. Journal of Construction Research, 03(01), 1-16. doi:10.1142/s1609945102000035Ballard, G., & Howell, G. (2003). Lean project management. Building Research & Information, 31(2), 119-133. doi:10.1080/09613210301997Jaganathan, S., Nesan, L. J., Ibrahim, R., & Mohammad, A. H. (2013). Integrated design approach for improving architectural forms in industrialized building systems. Frontiers of Architectural Research, 2(4), 377-386. doi:10.1016/j.foar.2013.07.003BALLARD, G. (2002). Managing work flow on design projects: a case study. Engineering, Construction and Architectural Management, 9(3), 284-291. doi:10.1108/eb021223Bryde, D., Unterhitzenberger, C., & Joby, R. (2018). Conditions of success for earned value analysis in projects. International Journal of Project Management, 36(3), 474-484. doi:10.1016/j.ijproman.2017.12.002Tauriainen, M., Marttinen, P., Dave, B., & Koskela, L. (2016). The Effects of BIM and Lean Construction on Design Management Practices. Procedia Engineering, 164, 567-574. doi:10.1016/j.proeng.2016.11.659Mahalingam, A., Yadav, A. K., & Varaprasad, J. (2015). Investigating the Role of Lean Practices in Enabling BIM Adoption: Evidence from Two Indian Cases. Journal of Construction Engineering and Management, 141(7), 05015006. doi:10.1061/(asce)co.1943-7862.0000982Wesz, J. G. B., Formoso, C. T., & Tzortzopoulos, P. (2018). Planning and controlling design in engineered-to-order prefabricated building systems. Engineering, Construction and Architectural Management, 25(2), 134-152. doi:10.1108/ecam-02-2016-0045Tribelsky, E., & Sacks, R. (2011). An Empirical Study of Information Flows in Multidisciplinary Civil Engineering Design Teams using Lean Measures. Architectural Engineering and Design Management, 7(2), 85-101. doi:10.1080/17452007.2011.582332Savolainen, J. M., Saari, A., Männistö, A., & Kähkonen, K. (2018). Indicators of collaborative design management in construction projects. Journal of Engineering, Design and Technology, 16(4), 674-691. doi:10.1108/jedt-09-2017-0091Arroyo, P., Tommelein, I. D., & Ballard, G. (2016). Selecting Globally Sustainable Materials: A Case Study Using Choosing by Advantages. Journal of Construction Engineering and Management, 142(2), 05015015. doi:10.1061/(asce)co.1943-7862.0001041McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 276-282. doi:10.11613/bm.2012.03

    Understanding Interactions between Design Team Members of Construction Projects Using Social Network Analysis

    Full text link
    [EN] Social network analysis (SNA) has not been used to study design project teams in which the full interactions have become more complex (formal and informal) because the team members are from different companies and there is no colocation. This work proposes a method to understand the interactions in the design teams of construction projects using SNA metrics and the sociograms generated within temporary organizations. This study includes three stages: (1) a literature review of the dimensions of interactions within work teams and the application of SNA to the architecture, engineering, and construction (AEC) industry; (2) a proposal of an interaction network method for construction project design teams; and (3) an analysis of a pilot project. Interaction networks were defined in two categories: general interactions and commitment management. For each network, metric indicators were defined for the analysis. The pilot project showed high levels of consistency among team responses. The proposed method allows an analysis of the entire work team and of each individual team member. The method also makes it possible to analyze the work team from a global perspective by carrying out a joint analysis of two or more networks.The authors would like to acknowledge the help and support provided by GEPUC and GEPRO SpA., which provided access to data collection for this study. In addition, the authors acknowledge financial support from FONDECYT (1181648) and the Pontificia Universidad Catolica de Chile. Rodrigo Herrera acknowledges financial support for Ph.D. studies from VRI of PUC and CONICYT-PCHA/National Doctorate/2018-21180884.Herrera, RF.; Mourgues, C.; Alarcón, LF.; Pellicer, E. (2020). Understanding Interactions between Design Team Members of Construction Projects Using Social Network Analysis. Journal of Construction Engineering and Management. 146(6):1-13. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001841S1131466Alarcón D. M. I. M. Alarcón and L. F. Alarcón. 2013. “Social network analysis: A diagnostic tool for information flow in the AEC industry.” In Proc. 21st Annual Conf. of the Int. Group for Lean Construction 2013 947–956. Fortaleza Brazil: International Group for Lean Construction.Alarcón, L. F., Ashley, D. B., de Hanily, A. S., Molenaar, K. R., & Ungo, R. (2011). Risk Planning and Management for the Panama Canal Expansion Program. Journal of Construction Engineering and Management, 137(10), 762-771. doi:10.1061/(asce)co.1943-7862.0000317Al Hattab, M., & Hamzeh, F. (2015). Using social network theory and simulation to compare traditional versus BIM–lean practice for design error management. Automation in Construction, 52, 59-69. doi:10.1016/j.autcon.2015.02.014Austin, R. B., Pishdad-Bozorgi, P., & de la Garza, J. M. (2016). Identifying and Prioritizing Best Practices to Achieve Flash Track Projects. Journal of Construction Engineering and Management, 142(2), 04015077. doi:10.1061/(asce)co.1943-7862.0001061Baiden, B. K., Price, A. D. F., & Dainty, A. R. J. (2006). The extent of team integration within construction projects. International Journal of Project Management, 24(1), 13-23. doi:10.1016/j.ijproman.2005.05.001Cash, P., Dekoninck, E. A., & Ahmed-Kristensen, S. (2017). Supporting the development of shared understanding in distributed design teams. Journal of Engineering Design, 28(3), 147-170. doi:10.1080/09544828.2016.1274719Castillo, T., Alarcón, L. F., & Pellicer, E. (2018). Influence of Organizational Characteristics on Construction Project Performance Using Corporate Social Networks. Journal of Management in Engineering, 34(4), 04018013. doi:10.1061/(asce)me.1943-5479.0000612Castillo, T., Alarcón, L. F., & Salvatierra, J. L. (2018). Effects of Last Planner System Practices on Social Networks and the Performance of Construction Projects. Journal of Construction Engineering and Management, 144(3), 04017120. doi:10.1061/(asce)co.1943-7862.0001443Craft, R. C., & Leake, C. (2002). The Pareto principle in organizational decision making. Management Decision, 40(8), 729-733. doi:10.1108/00251740210437699Dainty, A. R. J., Briscoe, G. H., & Millett, S. J. (2001). Subcontractor perspectives on supply chain alliances. Construction Management and Economics, 19(8), 841-848. doi:10.1080/01446190110089727Dave B. S. Kubler K. Främling and L. Koskela. 2014. “Addressing information flow in lean production management and control in construction.” In Proc. 22nd Annual Conf. of the Int. Group for Lean Construction 581–592. Oslo Norway: International Group for Lean Construction.Flores J. J. C. Ruiz D. Alarcón L. F. Alarcón J. L. Salvatierra and I. Alarcón. 2014. “Improving connectivity and information flow in lean organizations—Towards an evidence-based methodology.” In Proc. 22nd Annual Conf. of the Int. Group for Lean Construction 2014 1109–1120. Oslo Norway: International Group for Lean Construction.Herrera R. F. C. Mourgues and L. F. Alarcón. 2018. “Assessment of lean practices performance and social networks in Chilean airport projects.” In Proc. 26th Annual Conf. of the Int. Group for Lean Construction 2018 603–613. Chennai India: International Group for Lean Construction.Hickethier G. I. D. Tommelein and B. Lostuvali. 2013. “Social network analysis of information flow in an IPD-project design organization.” In Proc. 21st Annual Conf. of the Int. Group for Lean Construction 2013 319–328. Fortaleza Brazil: International Group for Lean Construction.Hoppe, B., & Reinelt, C. (2010). Social network analysis and the evaluation of leadership networks. The Leadership Quarterly, 21(4), 600-619. doi:10.1016/j.leaqua.2010.06.004Karp, N. C., Hauer, K. E., & Sheu, L. (2019). Trusted to Learn: a Qualitative Study of Clerkship Students’ Perspectives on Trust in the Clinical Learning Environment. Journal of General Internal Medicine, 34(5), 662-668. doi:10.1007/s11606-019-04883-1Kereri, J. O., & Harper, C. M. (2019). Social Networks and Construction Teams: Literature Review. Journal of Construction Engineering and Management, 145(4), 03119001. doi:10.1061/(asce)co.1943-7862.0001628Kleinsmann, M., Deken, F., Dong, A., & Lauche, K. (2012). Development of design collaboration skills. Journal of Engineering Design, 23(7), 485-506. doi:10.1080/09544828.2011.619499Knotten, V., Lædre, O., & Hansen, G. K. (2017). Building design management – key success factors. Architectural Engineering and Design Management, 13(6), 479-493. doi:10.1080/17452007.2017.1345718Long D. and P. Arroyo. 2018. “Language moods and improving project performance.” In Proc. 26th Annual Conf. of the Int. Group for Lean Construction 2018 495–504. Chennai India: International Group for Lean Construction.Love, P. E. D., Irani, Z., Cheng, E., & LI, H. (2002). A model for supporting inter-organizational relations in the supply chain. Engineering Construction and Architectural Management, 9(1), 2-15. doi:10.1046/j.1365-232x.2002.00225.xMedina-Mora R. T. Winograd R. Flores and F. Flores. 1992. “The action workflow approach to workflow management technology.” In Proc. Computer Supported Cooperative Work 92 281–288. New York: Association for Computing Machinery.Ng, S. T., & Tang, Z. (2010). Labour-intensive construction sub-contractors: Their critical success factors. International Journal of Project Management, 28(7), 732-740. doi:10.1016/j.ijproman.2009.11.005Oluwatayo, A. A., & Amole, D. (2013). Ownership, structure, and performance of architectural firms. Frontiers of Architectural Research, 2(1), 94-106. doi:10.1016/j.foar.2012.12.001Oviedo-Haito, R. J., Jiménez, J., Cardoso, F. F., & Pellicer, E. (2014). Survival Factors for Subcontractors in Economic Downturns. Journal of Construction Engineering and Management, 140(3), 04013056. doi:10.1061/(asce)co.1943-7862.0000811Paris, C. R., Salas, E., & Cannon-Bowers, J. A. (2000). Teamwork in multi-person systems: a review and analysis. Ergonomics, 43(8), 1052-1075. doi:10.1080/00140130050084879Phelps A. F. 2012. “Behavioral factors influencing lean information flow in complex projects.” In Proc. 20th Annual Conf. of the Int. Group for Lean Construction 2012. San Diego: International Group for Lean Construction.Priven V. and R. Sacks. 2013. “Social network development in Last Planner System implementations.” In Proc. 21st Annual Conf. of the Int. Group for Lean Construction 2013 474–485. Fortaleza Brazil: International Group for Lean Construction.Pryke, S. (2012). Social Network Analysis in Construction. doi:10.1002/9781118443132Rahmawati Y. C. Utomo N. Anwar N. P. Negoro and C. B. Nurcahyo. 2014. “A framework of knowledge management for successful group decision in design process.” In Proc. 2014 IEEE Conf. on Open Systems 60–65. Subang Malaysia: IEEE.Rojas, M. J., Herrera, R. F., Mourgues, C., Ponz-Tienda, J. L., Alarcón, L. F., & Pellicer, E. (2019). BIM Use Assessment (BUA) Tool for Characterizing the Application Levels of BIM Uses for the Planning and Design of Construction Projects. Advances in Civil Engineering, 2019, 1-9. doi:10.1155/2019/9094254Schöttle A. S. Haghsheno and F. Gehbauer. 2014. “Defining cooperation and collaboration in the context of lean construction.” In Proc. 22nd Annual Conf. of the Int. Group for Lean Construction 1269–1280. Oslo Norway: International Group for Lean Construction.Schröpfer, V. L. M., Tah, J., & Kurul, E. (2017). Mapping the knowledge flow in sustainable construction project teams using social network analysis. Engineering, Construction and Architectural Management, 24(2), 229-259. doi:10.1108/ecam-08-2015-0124Scott, J. (2017). Social Network Analysis. doi:10.4135/9781529716597Searle, J. R. (1969). Speech Acts. doi:10.1017/cbo9781139173438Segarra L. R. F. Herrera L. F. Alarcón and E. Pellicer. 2017. “Knowledge management and information flow through social networks analysis in Chilean architecture firms.” In Proc. 25th Annual Conf. of the Int. Group for Lean Construction 413–420. Heraklion Greece: International Group for Lean Construction.Sonnenwald, D. H. (1996). Communication roles that support collaboration during the design process. Design Studies, 17(3), 277-301. doi:10.1016/0142-694x(96)00002-6Svalestuen F. K. Frøystad F. Drevland S. Ahmad J. Lohne and O. Lædre. 2015. “Key elements to an effective building design team.” In Proc. Int. Conf. on Project Management 838–843. Sapporo Japan: Elsevier.Sydow, J., & Braun, T. (2018). Projects as temporary organizations: An agenda for further theorizing the interorganizational dimension. International Journal of Project Management, 36(1), 4-11. doi:10.1016/j.ijproman.2017.04.012Turner, J. R., & Müller, R. (2003). On the nature of the project as a temporary organization. International Journal of Project Management, 21(1), 1-8. doi:10.1016/s0263-7863(02)00020-0Valentine, M. A., Nembhard, I. M., & Edmondson, A. C. (2015). Measuring Teamwork in Health Care Settings. Medical Care, 53(4), e16-e30. doi:10.1097/mlr.0b013e31827feef6Wesz, J. G. B., Formoso, C. T., & Tzortzopoulos, P. (2018). Planning and controlling design in engineered-to-order prefabricated building systems. Engineering, Construction and Architectural Management, 25(2), 134-152. doi:10.1108/ecam-02-2016-0045Wong, P. S. P., Demertjis, M., Hardie, M., & Lo, C. yiu. (2014). The effect of unlearning on organisational learning behaviour and performance in construction contracting organisations. International Journal of Project Organisation and Management, 6(3), 197. doi:10.1504/ijpom.2014.065256Zhang, L., & Ashuri, B. (2018). BIM log mining: Discovering social networks. Automation in Construction, 91, 31-43. doi:10.1016/j.autcon.2018.03.00

    Analyzing the Association between Lean Design Management Practices and BIM Uses in the Design of Construction Projects

    Full text link
    [EN] There is a beneficial effect when integrating Building Information Modeling (BIM) with lean practices to identify and reduce waste in the construction industry. According to experts, it is possible to improve the design process through waste reduction by implementing lean practices and BIM. An unexplored perspective on these synergies concerns the relationship between the specific uses of BIM and lean practices. Therefore, this study analyzed the relationships between Lean Design Management (LDM) practices and BIM uses in the planning and design phases of the infrastructure lifecycle. To achieve this objective, the research was organized into three stages: (1) the explanation of LDM practices and BIM uses; (2) the characterization of sample projects and data collection strategies; and (3) data exploration, including reliability analysis, descriptive statistics, association analysis, and a causal analysis of LDM practices and BIM uses. The analysis of the relationship between LDM practices and BIM uses generated empirical evidence of the implementation of BIM uses and lean management practices at the design phase. LDM practices from the categories planning and control and problem-solving and decision-making were more related to BIM uses than LDM practices from the category stakeholder management. Additionally, it was concluded that if a project applies a higher proportion of BIM uses, it will tend to apply a higher proportion of LDM practices; however, this relationship is not as clear in the other way around.The authors acknowledge the help and support provided by GEPUC, which provided access to data collection for this study. In addition, the authors acknowledge financial support from FONDECYT (1181648) and the Pontificia Universidad Católica de Chile. Rodrigo Herrera acknowledges financial support for Ph.D. studies from Vicerrectoría de Investigación (VRI) of Pontificia Universidad Católica de Chile (PUC) and CONICYT-PCHA/National Doctorate/2018 -21180884.Herrera, RF.; Mourgues, C.; Alarcón, LF.; Pellicer, E. (2021). Analyzing the Association between Lean Design Management Practices and BIM Uses in the Design of Construction Projects. Journal of Construction Engineering and Management. 147(4):1-11. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002014S1111474Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91-93. doi:10.1016/j.tjem.2018.08.001Al Hattab, M., & Hamzeh, F. (2015). Using social network theory and simulation to compare traditional versus BIM–lean practice for design error management. Automation in Construction, 52, 59-69. doi:10.1016/j.autcon.2015.02.014Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C., & O’Reilly, K. (2011). Technology adoption in the BIM implementation for lean architectural practice. Automation in Construction, 20(2), 189-195. doi:10.1016/j.autcon.2010.09.016Arroyo, P., Fuenzalida, C., Albert, A., & Hallowell, M. R. (2016). Collaborating in decision making of sustainable building design: An experimental study comparing CBA and WRC methods. Energy and Buildings, 128, 132-142. doi:10.1016/j.enbuild.2016.05.079Bloom, N., & Van Reenen, J. (2007). Measuring and Explaining Management Practices Across Firms and Countries. The Quarterly Journal of Economics, 122(4), 1351-1408. doi:10.1162/qjec.2007.122.4.1351Bloom, N., & Van Reenen, J. (2010). New Approaches to Surveying Organizations. American Economic Review, 100(2), 105-109. doi:10.1257/aer.100.2.105Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2008). BIM Handbook. doi:10.1002/9780470261309El. Reifi, M. H., & Emmitt, S. (2013). Perceptions of lean design management. Architectural Engineering and Design Management, 9(3), 195-208. doi:10.1080/17452007.2013.802979Fakhimi A. H. J. Majrouhi Sardroud and S. Azhar. 2016. “How can Lean IPD and BIM work together?” In Proc. 33rd Int. Symp. on Automation and Robotics in Construction (ISARC) 1–8. Auburn AL: International Symposium on Automation and Robotics in Construction.Formoso C. T. P. Tzotzopoulos M. S. Jobim and R. Liedtke. 1998. “Developing a protocol for managing the design process in the building industry.” In Proc. 6th Annual Conf. of the Int. Group for Lean Construction. Guarujá Brazil: International Group for Lean Construction.Gambatese, J. A., Pestana, C., & Lee, H. W. (2017). Alignment between Lean Principles and Practices and Worker Safety Behavior. Journal of Construction Engineering and Management, 143(1), 04016083. doi:10.1061/(asce)co.1943-7862.0001209Gerber D. J. B. Becerik-Gerber and A. Kunz. 2010. “Building information modeling and Lean Construction: Technology methodology and advances from practices.” In Proc. 18th Annual Conf. of the Int. Group for Lean Construction 1–11. Haifa Israel: International Group for Lean Construction.Gu, N., & London, K. (2010). Understanding and facilitating BIM adoption in the AEC industry. Automation in Construction, 19(8), 988-999. doi:10.1016/j.autcon.2010.09.002Koskela L. 2000. “An exploration towards a production theory and its application to construction.” Ph.D. thesis Dept. of Technology Technical Research Centre of Finland.Koskela L. G. Ballard and V. P. Tanhuanpää. 1997. “Towards lean design management.” In Proc. 5th Annual Conf. of the Int. Group for Lean Construction 1997 1–13. Gold Coast Australia: International Group for Lean Construction.Liu, Y., van Nederveen, S., & Hertogh, M. (2017). Understanding effects of BIM on collaborative design and construction: An empirical study in China. International Journal of Project Management, 35(4), 686-698. doi:10.1016/j.ijproman.2016.06.007Matta G. R. F. Herrera C. Baladrón Z. Giménez and L. F. Alarcón. 2018. “Using BIM-based sheets as a visual management tool for on-site instructions: A case study.” In Vol. 1 of Proc. 26th Annual Conf. of the Int. Group for Lean Construction: Evolving Lean Construction Towards Mature Production Management Across Cultures and Frontiers 144–154.Mesa, H. A., Molenaar, K. R., & Alarcón, L. F. (2016). Exploring performance of the integrated project delivery process on complex building projects. International Journal of Project Management, 34(7), 1089-1101. doi:10.1016/j.ijproman.2016.05.007Mok, K. Y., Shen, G. Q., & Yang, J. (2015). Stakeholder management studies in mega construction projects: A review and future directions. International Journal of Project Management, 33(2), 446-457. doi:10.1016/j.ijproman.2014.08.007Molwus, J. J., Erdogan, B., & Ogunlana, S. (2017). Using structural equation modelling (SEM) to understand the relationships among critical success factors (CSFs) for stakeholder management in construction. Engineering, Construction and Architectural Management, 24(3), 426-450. doi:10.1108/ecam-10-2015-0161Munthe-Kaas T. S. H. Hjelmbrekke and J. Lohne. 2015. “Lean design versus traditional design approach.” In Proc. 23th Annual Conf. Int. Group for Lean Construction 578–588. Perth Australia: International Group for Lean Construction.Nascimento, D., Caiado, R., Tortorella, G., Ivson, P., & Meiriño, M. (2018). Digital Obeya Room: exploring the synergies between BIM and lean for visual construction management. Innovative Infrastructure Solutions, 3(1). doi:10.1007/s41062-017-0125-0Olatunji, O. A. (2011). Modelling the costs of corporate implementation of building information modelling. Journal of Financial Management of Property and Construction, 16(3), 211-231. doi:10.1108/13664381111179206Porwal, A., & Hewage, K. N. (2013). Building Information Modeling (BIM) partnering framework for public construction projects. Automation in Construction, 31, 204-214. doi:10.1016/j.autcon.2012.12.004Ragin, C. C. (2006). Set Relations in Social Research: Evaluating Their Consistency and Coverage. Political Analysis, 14(3), 291-310. doi:10.1093/pan/mpj019Sacks R. R. Barak B. Belaciano and U. Gurevich. 2011. “Field tests of the KanBIM lean production management system.” In Proc. 19th Annual Conf. of the Int. Group for Lean Construction 1–12. Lima Perú: International Group for Lean Construction.Sacks, R., Koskela, L., Dave, B. A., & Owen, R. (2010). Interaction of Lean and Building Information Modeling in Construction. Journal of Construction Engineering and Management, 136(9), 968-980. doi:10.1061/(asce)co.1943-7862.0000203Schimanski C. P. G. P. Monizza C. Marcher and D. T. Matt. 2019. “Conceptual foundations for a new lean BIM-based production system in construction.” In Proc. 27th Annual Conf. of the Int. Group for Lean Construction 877–888. Dublin Ireland: International Group for Lean Construction.Schneider, C. Q., & Wagemann, C. (2012). Set-Theoretic Methods for the Social Sciences. doi:10.1017/cbo9781139004244Succar B. 2016. “211in model uses list.” Accessed March 1 2020. https://bimexcellence.org/wp-content/uploads/211in-Model-Uses-Table.pdf.Succar, B., Sher, W., & Williams, A. (2012). Measuring BIM performance: Five metrics. Architectural Engineering and Design Management, 8(2), 120-142. doi:10.1080/17452007.2012.659506Tsai, M.-H., Mom, M., & Hsieh, S.-H. (2014). Developing critical success factors for the assessment of BIM technology adoption: part I. Methodology and survey. Journal of the Chinese Institute of Engineers, 37(7), 845-858. doi:10.1080/02533839.2014.88881

    Value Analysis Model to Support the Building Design Process

    Full text link
    [EN] The architecture, engineering, and construction industry requires methods that link the capture of customer requirements with the continuous measurement of the value generated and the identification of value losses in the design process. A value analysis model (VAM) is proposed to measure the value creation expected by customers and to identify value losses through indexes. As points of reference, the model takes the Kano model and target costing, which is used in the building project design process. The VAM was developed under the design science research methodology, which focuses on solving practical problems by producing outputs by iteration. The resulting VAM allowed the measurement and analysis of value through desired, potential, and generated value indexes, value loss identification, and percentages of value fulfillment concerning the design stage. The VAM permits the comparison of different projects, visualization of the evolution of value generation, and identification of value losses to be eradicated. The VAM encourages constant feedback and has potential to deliver higher value, as it enables the determination of parameters that add value for different stakeholders and informs designers where to direct resources and efforts to enhance vital variables and not trivial variablesThis research was funded by CONICYT grant number PCHA/National Doctorate/2016-21160571 for the postgraduate studies of Zulay Giménez and by FONDECYT (1181648).Giménez, Z.; Mourgues, C.; Alarcón, LF.; Mesa, H.; Pellicer, E. (2020). Value Analysis Model to Support the Building Design Process. Sustainability. 12(10):1-24. https://doi.org/10.3390/su12104224S1241210Gunby, M., Damnjanovic, I., Anderson, S., Joyce, J., & Nuccio, J. (2013). Identifying, Communicating, and Responding to Project Value Interests. Journal of Management in Engineering, 29(1), 50-59. doi:10.1061/(asce)me.1943-5479.0000116Chaos Report. Project Smart UK. United Kingdomhttps://www.projectsmart.co.uk/white-papers/chaos-report.pdfDíaz, H., Alarcón, L. F., Mourgues, C., & García, S. (2017). Multidisciplinary Design Optimization through process integration in the AEC industry: Strategies and challenges. Automation in Construction, 73, 102-119. doi:10.1016/j.autcon.2016.09.007Bustos Chocomeli, Ó. H. (s. f.). Factores latentes de la desviación de presupuestos en proyectos de arquitectura. Un análisis empírico. doi:10.4995/thesis/10251/48558Knotten, V., Svalestuen, F., Hansen, G. K., & Lædre, O. (2015). Design Management in the Building Process - A Review of Current Literature. Procedia Economics and Finance, 21, 120-127. doi:10.1016/s2212-5671(15)00158-6Kamara, J. M., Anumba, C. J., & Evbuomwan, N. F. O. (2000). Process model for client requirements processing in construction. Business Process Management Journal, 6(3), 251-279. doi:10.1108/14637150010325462Kumar, V., & Whitney, P. (2007). Daily life, not markets: customer-centered design. Journal of Business Strategy, 28(4), 46-58. doi:10.1108/02756660710760944Love, P. E. D., Lopez, R., & Edwards, D. J. (2013). Reviewing the past to learn in the future: making sense of design errors and failures in construction. Structure and Infrastructure Engineering, 9(7), 675-688. doi:10.1080/15732479.2011.605369Holmström, J., Ketokivi, M., & Hameri, A.-P. (2009). Bridging Practice and Theory: A Design Science Approach. Decision Sciences, 40(1), 65-87. doi:10.1111/j.1540-5915.2008.00221.xPeffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems, 24(3), 45-77. doi:10.2753/mis0742-1222240302Huang, J. (2017). Application of Kano Model in Requirements Analysis of Y Company’s Consulting Project. American Journal of Industrial and Business Management, 07(07), 910-918. doi:10.4236/ajibm.2017.77064Rachwan, R., Abotaleb, I., & Elgazouli, M. (2016). The Influence of Value Engineering and Sustainability Considerations on the Project Value. Procedia Environmental Sciences, 34, 431-438. doi:10.1016/j.proenv.2016.04.038Eskerod, P., & Ang, K. (2017). Stakeholder Value Constructs in Megaprojects: A Long-Term Assessment Case Study. Project Management Journal, 48(6), 60-75. doi:10.1177/875697281704800606Bolar, A. A., Tesfamariam, S., & Sadiq, R. (2017). Framework for prioritizing infrastructure user expectations using Quality Function Deployment (QFD). International Journal of Sustainable Built Environment, 6(1), 16-29. doi:10.1016/j.ijsbe.2017.02.002Gallarza, M. G., Arteaga-Moreno, F., Servera-Francés, D., & Fayos-Gardó, T. (2016). Participar como voluntario en eventos especiales: comparación entre el valor esperado y percibido. Innovar, 26(59), 47-60. doi:10.15446/innovar.v26n59.54322Kowaltowski, D. C. C. K., & Granja, A. D. (2011). The concept of desired value as a stimulus for change in social housing in Brazil. Habitat International, 35(3), 435-446. doi:10.1016/j.habitatint.2010.12.002Tucker, J. R., Pearce, A. R., Bruce, R. D., McCoy, A. P., & Mills, T. H. (2012). The perceived value of green professional credentials to credential holders in the US building design and construction community. Construction Management and Economics, 30(11), 963-979. doi:10.1080/01446193.2012.728710Lee, B. D., & Paredis, C. J. J. (2014). A Conceptual Framework for Value-driven Design and Systems Engineering. Procedia CIRP, 21, 10-17. doi:10.1016/j.procir.2014.06.147Kamara, J. M., Anumba, C. J., & Evbuomwan, N. F. O. (2000). Establishing and processing client requirements-a key aspect of concurrent engineering in construction. Engineering Construction and Architectural Management, 7(1), 15-28. doi:10.1046/j.1365-232x.2000.00129.xDrevland, F., & Tillmann, P. A. (2018). Value for Whom? 26th Annual Conference of the International Group for Lean Construction. doi:10.24928/2018/0533Rybkowski, Z. K., Shepley, M. M., & Ballard, H. G. (2012). Target Value Design: Applications to Newborn Intensive Care Units. HERD: Health Environments Research & Design Journal, 5(4), 5-22. doi:10.1177/193758671200500402Yin, Y., Qin, S., & Holland, R. (2011). Development of a design performance measurement matrix for improving collaborative design during a design process. International Journal of Productivity and Performance Management, 60(2), 152-184. doi:10.1108/17410401111101485Volkova, T., & Jākobsone, I. (2016). Design thinking as a business tool to ensure continuous value generation. Intellectual Economics, 10(1), 63-69. doi:10.1016/j.intele.2016.06.003Westcott, M., Sato, S., Mrazek, D., Wallace, R., Vanka, S., Bilson, C., & Hardin, D. (2013). The DMI Design Value Scorecard: A New Design Measurement and Management Model. Design Management Review, 24(4), 10-16. doi:10.1111/drev.10257Heikkilä, V. T., Paasivaara, M., Lasssenius, C., Damian, D., & Engblom, C. (2017). Managing the requirements flow from strategy to release in large-scale agile development: a case study at Ericsson. Empirical Software Engineering, 22(6), 2892-2936. doi:10.1007/s10664-016-9491-zFARÍAS, P., & FISTROVIC, B. (2016). LAS PREFERENCIAS DEL CONSUMIDOR USANDO EL MÉTODO DE MÁXIMAS DIFERENCIAS. Revista de Administração de Empresas, 56(2), 138-151. doi:10.1590/s0034-759020160202Amini, P., Falk, B., & Schmitt, R. (2016). A Framework for Value-optimized Design of Product Features. Procedia CIRP, 57, 386-391. doi:10.1016/j.procir.2016.11.067Menezes, A. C., Cripps, A., Bouchlaghem, D., & Buswell, R. (2012). Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap. Applied Energy, 97, 355-364. doi:10.1016/j.apenergy.2011.11.075Zimina, D., Ballard, G., & Pasquire, C. (2012). Target value design: using collaboration and a lean approach to reduce construction cost. Construction Management and Economics, 30(5), 383-398. doi:10.1080/01446193.2012.676658Borgianni, Y. (2018). Verifying dynamic Kano’s model to support new product/service development. Journal of Industrial Engineering and Management, 11(3), 569. doi:10.3926/jiem.2591Pandolfo, A., Rojas, J. W., Kurek, J., Pandolfo, L., Lublo, R., Guimaráes, J., & Reinehr, R. (2008). Aplicación del modelo de evaluación de proyectos habitacionales para la medición de la satisfacción de las necesidades del usuario. Revista ingeniería de construcción, 23(1). doi:10.4067/s0718-50732008000100005Haddadi, A., Johansen, A., & Andersen, B. (2016). A Conceptual Framework to Enhance Value Creation in Construction Projects. Procedia Computer Science, 100, 565-573. doi:10.1016/j.procs.2016.09.196Lin, G., & Shen, Q. (2007). Measuring the Performance of Value Management Studies in Construction: Critical Review. Journal of Management in Engineering, 23(1), 2-9. doi:10.1061/(asce)0742-597x(2007)23:1(2)Witell, L., Löfgren, M., & Dahlgaard, J. J. (2013). Theory of attractive quality and the Kano methodology – the past, the present, and the future. Total Quality Management & Business Excellence, 24(11-12), 1241-1252. doi:10.1080/14783363.2013.791117Rischmoller, L., Alarcón, L. F., & Koskela, L. (2006). Improving Value Generation in the Design Process of Industrial Projects Using CAVT. Journal of Management in Engineering, 22(2), 52-60. doi:10.1061/(asce)0742-597x(2006)22:2(52)Tauriainen, M., Marttinen, P., Dave, B., & Koskela, L. (2016). The Effects of BIM and Lean Construction on Design Management Practices. Procedia Engineering, 164, 567-574. doi:10.1016/j.proeng.2016.11.659Song, J., Migliaccio, G. C., Wang, G., & Lu, H. (2017). Exploring the Influence of System Quality, Information Quality, and External Service on BIM User Satisfaction. Journal of Management in Engineering, 33(6), 04017036. doi:10.1061/(asce)me.1943-5479.0000549Matzler, K., Hinterhuber, H. H., Bailom, F., & Sauerwein, E. (1996). How to delight your customers. Journal of Product & Brand Management, 5(2), 6-18. doi:10.1108/1061042961011946

    BIM Use Assessment (BUA) Tool for Characterizing the Application Levels of BIM Uses for the Planning and Design of Construction Projects

    Full text link
    [EN] The evaluation of BIM capabilities and repeatability enables a company or project to identify its current status and how to improve continuously; this evaluation can be performed with BIM maturity models. However, these maturity models can measure the BIM state but not specifically the application of BIM uses. Likewise, in interorganizational project teams with a diversity of factors from various companies, it is possible to evaluate the capacity at a specified time with specified factors, but it is not possible to evaluate the repeatability unless the client always works with the same project teams. Therefore, despite the existence of various BIM uses in the literature, there is no instrument to evaluate the level of implementation of them in construction projects. This research proposes a BIM Use Assessment (BUA) tool for characterizing the levels of application of the BIM uses in the planning and design phases of building projects. The research methodology was organized into three stages: (1) identification, selection, and definition of BIM uses; (2) proposal of the BUA tool for characterizing the level of BIM use application; and (3) validation of the BUA tool. The tool was validated using 25 construction projects, where high reliability and concordance were observed; hence, the BUA tool complies with the consistency and concordance analysis for assessing uses in the design and planning phases of construction projects. The assessment will enable self-diagnosis, stakeholder qualification/selection, and industry benchmarking.This work was supported by FONDECYT (1181648 to Alarcón L. F. and Mourgues C.) and CONICYT, Chile (PCHA/National Doctorate/2018-21180884 to Herrera R. F.).Rojas, MJ.; Herrera, RF.; Mourgues, C.; Ponz-Tienda, JL.; Alarcón, LF.; Pellicer, E. (2019). BIM Use Assessment (BUA) Tool for Characterizing the Application Levels of BIM Uses for the Planning and Design of Construction Projects. Advances in Civil Engineering. 2019:1-9. https://doi.org/10.1155/2019/9094254S192019Azhar, S. (2011). Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadership and Management in Engineering, 11(3), 241-252. doi:10.1061/(asce)lm.1943-5630.0000127Succar, B., Sher, W., & Williams, A. (2012). Measuring BIM performance: Five metrics. Architectural Engineering and Design Management, 8(2), 120-142. doi:10.1080/17452007.2012.659506Sydow, J., & Braun, T. (2018). Projects as temporary organizations: An agenda for further theorizing the interorganizational dimension. International Journal of Project Management, 36(1), 4-11. doi:10.1016/j.ijproman.2017.04.012McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 276-282. doi:10.11613/bm.2012.03

    Thin film transistors fabricated by in-situ doped unhydrogenated polysilicon films obtained by solid phase crystallization

    No full text
    International audienceHigh mobility low temperature (≤ 600°C) unhydrogenated in-situ doped polysilicon thin film transistors are made. Polysilicon layers are grown by a LPCVD technique and crystallized in vacuum by a thermal annealing. Source and drain regions are in-situ doped. Gate insulator is made of an APCVD silicon dioxide. Hydrogen passivation is not performed on the transistors. One type of transistors is made of two polysilicon layers, the other one is constituted of a single polysilicon layer. The electrical properties are better for transistors made of single polysilicon layer: a low threshold voltage (1.2 V), a subthreshold slope S = 0.7 V/dec, a high field effect mobility (≈ 100 cm2/Vs) and a On/Off state current ratio higher than 107 for a drain voltage Vds = 1 V. At low drain voltage, for both transistors, the Off state current results from a pure thermal emission of trapped carriers. However, at high drain voltage, the electrical behavior is different: in the case of single polysilicon TFTs, the current obeys the field-assisted (Poole-Frenkel) thermal emission model of trapped carriers while for TFTs made of two polysilicon layers, the higher Off state current results from a field-enhanced thermal emission

    Failure patterns caused by localized rise in pore-fluid overpressure and effective strength of rocks

    Get PDF
    In order to better understand the interaction between pore-fluid overpressure and failure patterns in rocks we consider a porous elasto-plastic medium in which a laterally localized overpressure line source is imposed at depth below the free surface. We solve numerically the fluid filtration equation coupled to the gravitational force balance and poro-elasto-plastic rheology equations. Systematic numerical simulations, varying initial stress, intrinsic material properties and geometry, show the existence of five distinct failure patterns caused by either shear banding or tensile fracturing. The value of the critical pore-fluid overpressure at the onset of failure is derived from an analytical solution that is in excellent agreement with numerical simulations. Finally, we construct a phase-diagram that predicts the domains of the different failure patterns and at the onset of failure
    corecore