6,417 research outputs found

    Magnetic dipolar ordering and relaxation in the high-spin molecular cluster compound Mn6

    Get PDF
    Few examples of magnetic systems displaying a transition to pure dipolar magnetic order are known to date, and single-molecule magnets can provide an interesting example. The molecular cluster spins and thus their dipolar interaction energy can be quite high, leading to reasonably accessible ordering temperatures, provided the crystal field anisotropy is sufficiently small. This condition can be met for molecular clusters of sufficiently high symmetry, as for the Mn6 compound studied here. Magnetic specific heat and susceptibility experiments show a transition to ferromagnetic dipolar order at T_{c} = 0.16 K. Classical Monte-Carlo calculations indeed predict ferromagnetic ordering and account for the correct value of T_{c}. In high magnetic fields we detected the contribution of the ^{55}Mn nuclei to the specific heat, and the characteristic timescale of nuclear relaxation. This was compared with results obtained directly from pulse-NMR experiments. The data are in good mutual agreement and can be well described by the theory for magnetic relaxation in highly polarized paramagnetic crystals and for dynamic nuclear polarization, which we extensively review. The experiments provide an interesting comparison with the recently investigated nuclear spin dynamics in the anisotropic single molecule magnet Mn12-ac.Comment: 19 pages, 11 eps figures. Contains extensive discussions on dipolar ordering, specific heat and nuclear relaxation in molecular magnet

    Observation of the single-electron regime in a highly tunable silicon quantum dot

    Full text link
    We report on low-temperature electronic transport measurements of a silicon metal-oxide-semiconductor quantum dot, with independent gate control of electron densities in the leads and the quantum dot island. This architecture allows the dot energy levels to be probed without affecting the electron density in the leads, and vice versa. Appropriate gate biasing enables the dot occupancy to be reduced to the single-electron level, as evidenced by magnetospectroscopy measurements of the ground state of the first two charge transitions. Independent gate control of the electron reservoirs also enables discrimination between excited states of the dot and density of states modulations in the leads.Comment: 4 pages, 3 figures, accepted for Applied Physics Letter

    ab-plane resistivity and possible charge stripe ordering in strongly underdoped La2x_{2-x}Srx_{x}CuO4_{4} single crystals

    Full text link
    We have measured the ab-plane resistivity of La2x_{2-x}Srx_xCuO4_4 single crystals with small Sr content (x=0.052 ÷\div 0.075) between 4.2 and 300 K by using the AC Van der Pauw technique. As recently suggested by Ichikawa et al., the deviation from the linearity of the ρab(T)\rho_{\mathrm{ab}}(T) curve starting at a temperature Tch_{\mathrm{ch}} can be interpreted as due to a progressive slowing down of the fluctuations of pre-formed charge stripes. An electronic transition of the stripes to a more ordered phase could instead be responsible for some very sharp anomalies present in the ρab(T)\rho_{\mathrm{ab}}(T) of superconducting samples just above TcT_{\mathrm{c}}.Comment: M2S-HTSC-VI Conference paper (2 pages, 2 figures), using Elsevier style espcrc2.st

    Simulation and performance of an artificial retina for 40 MHz track reconstruction

    Get PDF
    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40MHz40\,\rm MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.Comment: Final draft of WIT proceedings modified according to JINST referee's comment

    The artificial retina for track reconstruction at the LHC crossing rate

    Full text link
    We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40MHz40\,\rm MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.Comment: 3 pages, 3 figures, ICHEP14. arXiv admin note: text overlap with arXiv:1409.089

    A Specialized Processor for Track Reconstruction at the LHC Crossing Rate

    Full text link
    We present the results of an R&D study of a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature. We find that high-quality tracking in large detectors is possible with sub-μ\mus latencies when this algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices. This opens a possibility of making track reconstruction happen transparently as part of the detector readout.Comment: Presented by G.Punzi at the conference on "Instrumentation for Colliding Beam Physics" (INSTR14), 24 Feb to 1 Mar 2014, Novosibirsk, Russia. Submitted to JINST proceeding

    Impact of g-factors and valleys on spin qubits in a silicon double quantum dot

    Full text link
    We define single electron spin qubits in a silicon MOS double quantum dot system. By mapping the qubit resonance frequency as a function of gate-induced electric field, the spectrum reveals an anticrossing that is consistent with an inter-valley spin-orbit coupling. We fit the data from which we extract an inter-valley coupling strength of 43 MHz. In addition, we observe a narrow resonance near the primary qubit resonance when we operate the device in the (1,1) charge configuration. The experimental data is consistent with a simulation involving two weakly exchanged-coupled spins with a g-factor difference of 1 MHz, of the same order as the Rabi frequency. We conclude that the narrow resonance is the result of driven transitions between the T- and T+ triplet states, using an ESR signal of frequency located halfway between the resonance frequencies of the two individual spins. The findings presented here offer an alternative method of implementing two-qubit gates, of relevance to the operation of larger scale spin qubit systems
    corecore