1,124 research outputs found
Water formation at low temperatures by surface O2 hydrogenation I: characterization of ice penetration
Water is the main component of interstellar ice mantles, is abundant in the
solar system and is a crucial ingredient for life. The formation of this
molecule in the interstellar medium cannot be explained by gas-phase chemistry
only and its surface hydrogenation formation routes at low temperatures (O, O2,
O3 channels) are still unclear and most likely incomplete. In a previous paper
we discussed an unexpected zeroth-order H2O production behavior in O2 ice
hydrogenation experiments compared to the first-order H2CO and CH3OH production
behavior found in former studies on hydrogenation of CO ice. In this paper we
experimentally investigate in detail how the structure of O2 ice leads to this
rare behavior in reaction order and production yield. In our experiments H
atoms are added to a thick O2 ice under fully controlled conditions, while the
changes are followed by means of reflection absorption infrared spectroscopy
(RAIRS). The H-atom penetration mechanism is systematically studied by varying
the temperature, thickness and structure of the O2 ice. We conclude that the
competition between reaction and diffusion of the H atoms into the O2 ice
explains the unexpected H2O and H2O2 formation behavior. In addition, we show
that the proposed O2 hydrogenation scheme is incomplete, suggesting that
additional surface reactions should be considered. Indeed, the detection of
newly formed O3 in the ice upon H-atom exposure proves that the O2 channel is
not an isolated route. Furthermore, the addition of H2 molecules is found not
to have a measurable effect on the O2 reaction channel.Comment: 1 page, 1 figur
Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region
We have performed a systematic study of several regions in the sky where the
number of galaxies exhibiting star formation (SF) activity is greater than
average. We used Kiso ultraviolet-excess galaxies (KUGs) as our SF-enhanced
sample. By statistically comparing the KUG and non-KUG distributions, we
discovered four KUG-rich regions with a size of . One of these regions corresponds spatially to a filament of length
Mpc in the Lynx-Ursa Major region (). We call this ``the Lynx-Ursa
Major (LUM) filament''. We obtained surface photometry of 11 of
the KUGs in the LUM filament and used these to investigate the integrated
colors, distribution of SF regions, morphologies, and local environments. We
found that these KUGs consist of distorted spiral galaxies and compact galaxies
with blue colors. Their star formation occurs in the entire disk, and is not
confined to just the central regions. The colors of the SF regions imply that
active star formation in the spiral galaxies occurred yr ago,
while that of the compact objects occurred yr ago. Though the
photometric characteristics of these KUGs are similar to those of interacting
galaxies or mergers, most of these KUGs do not show direct evidence of merger
processes.Comment: 39 pages LaTeX, using aasms4.sty, 20 figures, ApJS accepted. The
Title of the previous one was truncated by the author's mistake, and is
corrected. Main body of the paper is unchange
Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion
<p>Abstract</p> <p>Background</p> <p>We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear.</p> <p>Results</p> <p>We examined HIV-1 fusion with a panel of target cells lines and with primary CD4<sup>+ </sup>T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells <it>via </it>endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization.</p> <p>Conclusions</p> <p>Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.</p
Coherent movement of error-prone individuals through mechanical coupling
We investigate how reliable movement can emerge in aggregates of highly error-prone individuals. The individuals - robotic modules - move stochastically using vibration motors. By coupling them via elastic links, soft-bodied aggregates can be created. We present distributed algorithms that enable the aggregates to move and deform reliably. The concept and algorithms are validated through formal analysis of the elastic couplings and experiments with aggregates comprising up to 49 physical modules - among the biggest soft-bodied aggregates to date made of autonomous modules. The experiments show that aggregates with elastic couplings can shrink and stretch their bodies, move with a precision that increases with the number of modules, and outperform aggregates with no, or rigid, couplings. Our findings demonstrate that mechanical couplings can play a vital role in reaching coherent motion among individuals with exceedingly limited and error-prone abilities, and may pave the way for low-power, stretchable robots for high-resolution monitoring and manipulation
- …