118 research outputs found

    Effect of Irrigation Management on Water Productivity Indicators of Alfalfa

    Get PDF
    Introduction Over the last years, long-term average rainfall has experienced a meaningful decrease (from 250 to 206 mm per year) leading to continuous drought in Iran. In addition, population growth and increasing demand for food put more pressure on the limited available water resources. Thus, the quantitative and qualitative improvement of agricultural products become a necessity. There is 640,000 hectares of alfalfa cultivated land, standing for 5.4% of the total cultivated area. One of the most basic obstacles in these farms is the unsuitable model of water consumption management. Previous studies were conducted with the aim of evaluating the mutual effects of different treatments in controlled plots. Nonetheless, there is a need for large-scale investigations to monitor and improve water productivity in agricultural systems. In this research, the focus was on irrigation management and optimizing irrigation timing as a potential solution to enhance water productivity, considering the fixed irrigation cycles and traditional use of available water resources. The study began by assessing the current water productivity in 11 alfalfa farms located across four regions in Zanjan province, ensuring a suitable spatial distribution. Subsequently, the impact of irrigation management, particularly the adjustment of irrigation timing, was evaluated to determine its effectiveness in improving water productivity in these farms. Materials and Methods Eleven alfalfa farms, covering a total area of 28 hectares, were initially selected in the agricultural lands of Zanjan province. The majority of these farms were equipped with sprinkler irrigation systems. From these 11 farms, two specific farms were chosen to implement the proposed methods aimed at improving water productivity. These selected farms served as experimental sites where the irrigation management techniques were applied and evaluated. Improvement solutions were mainly focused on irrigation management. Each farm was divided into two parts; one part with real conditions (farmers' management) and the second one with controlled conditions. In the controlled treatments, irrigation management was implemented through optimization of irrigation time. A nutritional program was also prepared according to the soil quality of the fields and applied in the controlled treatments. In each farm, basic information such as area, physical and chemical properties of soil and water quality were determined. Irrigation information (such as inflow discharge and irrigation schedule) was measured and determined at least three times during the cropping season. Soil moisture were measured before and after irrigation in order to calculate the water application efficiency. The amount of harvested product and production costs were obtained at the end of the cropping season through measurements and interviews with farmers. In this research, the indicators including the volume of irrigation water, the water use efficiency, and the physical and economic efficiency of water have been calculated to analyze the water productivity. Results and Discussion The volume of irrigation water in alfalfa farms was measured as 14250 m3/ha on average (with the lowest and highest consumption values of 9849 and 20576 m3/ha, respectively). The average of irrigation water in farms with surface irrigation systems equals to 17,806 and in farms equipped with sprinkle irrigation systems is about 13,460 m3/ha. While the net water requirement of alfalfa in study area was 7160 to 7290 m3/ha. The minimum and maximum values of water application efficiency were 38.3 and 82%, respectively, with average of 64%. The average of application efficiency in surface and sprinkle irrigation systems were obtained 50 and 67%, respectively. The measured alfalfa yield ranged from a minimum of 6.5 ton/ha to a maximum of 14.1 ton/ha, with an average yield of 10.4 ton/ha. After implementing the revised irrigation program in the controlled plots, the harvested water decreased by an average of 49.5%. It was observed that the irrigation schedule in most farms followed a traditional and estimated pattern, with the depth of irrigation water in the middle of the growing season exceeding the net irrigation requirement. The water use efficiency (WUE) values varied between 0.42 and 1.28 kg/m3, with a minimum value of 0.42 kg/m3 and a maximum value of 1.28 kg/m3. The average WUE was calculated as 0.79 kg/m3. Analyzing the correlation between water consumption and the water use efficiency index revealed a decreasing trend. As the volume of irrigation water increased, the water use efficiency index experienced a decline. Specifically, an increase of 1000 m3 in irrigation water resulted in a decrease of 0.04 kg/m3 in the water use efficiency index. The implementation of the corrected irrigation program and appropriate to the water demand led to an increase of the mentioned index by 72%. Conclusion The lack of proper irrigation programs that consider climatic conditions and the actual needs of the alfalfa plant was identified as a key factor contributing to high water consumption in the farms. Additionally, the inefficient selection and design of the irrigation system led to lower irrigation efficiency than expected. Despite the majority of farms being equipped with sprinkle irrigation systems, the harvested water did not decrease significantly due to inadequate water management practices. These factors ultimately resulted in a decline in both physical and economic productivity indicators in the alfalfa farms. However, the results of the study highlighted that implementing corrected irrigation management, particularly through modifications to the irrigation timing, can lead to a significant decrease in volume of irrigation water and an improvement in both physical and economic productivity

    Pseudomonas viridiflava, a Multi Host Plant Pathogen with Significant Genetic Variation at the Molecular Level

    Get PDF
    The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan), as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR) and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB), and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species

    PTMs in Conversation: Activity and Function of Deubiquitinating Enzymes Regulated via Post-Translational Modifications

    Get PDF
    Deubiquitinating enzymes (DUBs) constitute a diverse protein family and their impact on numerous biological and pathological processes has now been widely appreciated. Many DUB functions have to be tightly controlled within the cell, and this can be achieved in several ways, such as substrate-induced conformational changes, binding to adaptor proteins, proteolytic cleavage, and post-translational modifications (PTMs). This review is focused on the role of PTMs including monoubiquitination, sumoylation, acetylation, and phosphorylation as characterized and putative regulative factors of DUB function. Although this aspect of DUB functionality has not been yet thoroughly studied, PTMs represent a versatile and reversible method of controlling the role of DUBs in biological processes. In several cases PTMs might constitute a feedback mechanism insuring proper functioning of the ubiquitin proteasome system and other DUB-related pathways

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Biocontrol Potential of Forest Tree Endophytes

    Get PDF
    Peer reviewe

    A bidentate Polycomb Repressive-Deubiquitinase complex is required for efficient activity on nucleosomes

    Get PDF
    Attachment of ubiquitin to lysine 119 of Histone 2A (H2AK119Ub) is an epigenetic mark characteristic of repressed developmental genes, which is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here we report the crystal structure of the Drosophila PR-DUB, revealing that the deubiquitinase Calypso and its activating partner ASX form a 2:2 complex. The bidentate Calypso–ASX complex is generated by dimerisation of two activated Calypso proteins through their coiled-coil regions. Disrupting the Calypso dimer interface does not affect inherent catalytic activity, but inhibits removal of H2AK119Ub as a consequence of impaired recruitment to nucleosomes. Mutating the equivalent surface on the human counterpart, BAP1, also compromises activity on nucleosomes. Together, this suggests that high local concentrations drive assembly of bidentate PR-DUB complexes on chromatin—providing a mechanistic basis for enhanced PR-DUB activity at specific genomic foci, and the impact of distinct classes of PR-DUB mutations in tumorigenesis

    Regulatory Impacts on Distributed Generation and Upstream Transmission Substation Expansion Planning: A Novel Stochastic Bi-level Model

    No full text
    In this paper, a novel framework is proposed to study impacts of regulatory incentive on distributed generation (DG) investment in sub-transmission substations, as well as upgrading of upstream transmission substations. Both conventional and wind power technologies are considered here. Investment incentives are fuel cost, firm contracts, capacity payment and investment subsidy relating to wind power. The problem is modelled as a bi-level stochastic optimization problem, where the upper level consists of investor's decisions maximizing its own profit. Both market clearing and decision on upgrading of transmission substation aiming at minimizing the total cost are considered in the lower level. Due to non-convexity of the lower level and impossibility of converting to single level problem (i.e. mathematical programming with equilibrium constraints (MPEC)), an algorithm combing enumeration and mathematical optimization is used to tackle with the non-convexity. For each upgrading strategy of substations, a stochastic MPEC, converted to a mixed integer linear programming (MILP) is solved. The proposed model is examined on a six-bus and an actual network. Numerical studies confirm that the proposed model can be used for analysing investment behaviour of DGs and substation expansion

    The antimicrobial effect of Zataria multiflora Boiss. essential oil against E. coli O157: H7 in minced beef meat during refrigerated storage

    No full text
    The antimicrobial effect of of different concentrations of Zataria multiflora Boiss. essential oil  at supplementation levels of  (0, 0.005, 0.015, 0. 03%), on E. Coli O157:H7 was examined in minced beef meat. All of the above concentrations showed acceptable organoleptic properties in minced beef. Eo at 0.03% possessed a strong antibacterial activity against E.Coli O157:H7  in minced beef. The correlation coefficient of different concentrations of zataria multiflora Boiss. essential oil with logarithm of the numbers of E. Coli O157:H7 was –0.701, –0.599 at 4 and 10°C respectively. It was found that effect of different concentrations of essential oil on growth rate of E. coli O157:H7 was statistically significant (
    corecore