1,621 research outputs found

    Assessing the role of dispersed floralresources for managed bees in providingsupporting ecosystem services for croppollination

    Get PDF
    Most pollination ecosystem services studies have focussed on wild pollinators and their dependence on natural floral resources adjacent to crop fields. However, managed pollinators depend on a mixture of floral resources that are spatially separated from the crop field. Here, we consider the supporting role these resources play as an ecosystem services provider to quantify the use and availability of floral resources, and to estimate their relative contribution to support pollination services of managed honeybees. Beekeepers supplying pollination services to the Western Cape deciduous fruit industry were interviewed to obtain information on their use of floral resources. For 120 apiary sites, we also analysed floral resources within a two km radius of each site based on geographic data. The relative availability of floral resources at sites was compared to regional availability. The relative contribution of floral resources-types to sustain managed honeybees was estimated. Beekeepers showed a strong preference for eucalypts and canola. Beekeepers selectively placed more hives at sites with eucalypt and canola and less with natural vegetation. However, at the landscape-scale, eucalypt was the least available resource, whereas natural vegetation was most common. Based on analysis of apiary sites, we estimated that 700,818 ha of natural vegetation, 73,910 ha of canola fields, and 10,485 ha of eucalypt are used to support the managed honeybee industry in the Western Cape. Whereas the Cape managed honeybee system uses a bee native to the region, alien plant species appear disproportionately important among the floral resources being exploited. We suggest that an integrated approach, including evidence from interview and landscape data, and fine-scale biological data is needed to study floral resources supporting managed honeybees

    Ambipolar charge injection and transport in a single pentacene monolayer island

    Full text link
    Electrons and holes are locally injected in a single pentacene monolayer island. The two-dimensional distribution and concentration of the injected carriers are measured by electrical force microscopy. In crystalline monolayer islands, both carriers are delocalized over the whole island. On disordered monolayer, carriers stay localized at their injection point. These results provide insight into the electronic properties, at the nanometer scale, of organic monolayers governing performances of organic transistors and molecular devices.Comment: To be published in Nano Letter

    CARMA observations of massive Planck-discovered cluster candidates at z>0.5 associated with WISE overdensities: Breaking the size-flux degeneracy

    Get PDF
    We use a Bayesian software package to analyze CARMA-8 data towards 19 unconfirmed Planck SZ-cluster candidates from Rodriguez-Gonzalvez et al. (2015), that are associated with significant overdensities in WISE. We used two cluster parameterizations, one based on a (fixed shape) generalized-NFW pressure profile and another based on a beta-gas-density profile (with varying shape parameters) to obtain parameter estimates for the nine CARMA-8 SZ-detected clusters. We find our sample is comprised of massive, Y_{500}=0.0010 \pm 0.0015 arcmin^2, relatively compact, theta_{500}= 3.9 \pm 2.0 arcmin systems. Results from the beta model show that our cluster candidates exhibit a heterogeneous set of brightness-temperature profiles. Comparison of Planck and CARMA-8 measurements showed good agreement in Y_{500} and an absence of obvious biases. We estimated the total cluster mass M_{500} as a function of z for one of the systems; at the preferred photometric redshift of 0.5, the derived mass, M_{500} \approx 0.8 \pm 0.2 \times 10^{15} Msun. Spectroscopic Keck/MOSFIRE data confirmed a galaxy member of one of our cluster candidates to be at z=0.565. Applying a Planck prior in Y_{500} to the CARMA-8 results reduces uncertainties for both parameters by a factor >4, relative to the independent Planck or CARMA-8 measurements. We here demonstrate a powerful technique to find massive clusters at intermediate z \gtrsim 0.5 redshifts using a cross-correlation between Planck and WISE data, with high-resolution follow-up with CARMA-8. We also use the combined capabilities of Planck and CARMA-8 to obtain a dramatic reduction by a factor of several, in parameter uncertainties.Comment: 26 pages, 8 figures, appearing in MNRAS (responded to referee report

    Superconducting spin filter

    Full text link
    Consider two normal leads coupled to a superconductor; the first lead is biased while the second one and the superconductor are grounded. In general, a finite current I2(V1,0)I_2(V_1,0) is induced in the grounded lead 2; its magnitude depends on the competition between processes of Andreev and normal quasiparticle transmission from the lead 1 to the lead 2. It is known that in the tunneling limit, when normal leads are weakly coupled to the superconductor, I2(V1,0)=0I_2(V_1,0)=0, if ∣V1∣<Δ|V_1|<\Delta and the system is in the clean limit. In other words, Andreev and normal tunneling processes compensate each-other. We consider the general case: the voltages are below the gap, the system is either dirty or clean. It is shown that I2(V1,0)=0I_2(V_1,0)=0 for general configuration of the normal leads; if the first lead injects spin polarized current then I2=0I_2=0, but spin current in the lead-2 is finite. XISIN structure, where X is a source of the spin polarized current could be applied as a filter separating spin current from charge current. We do an analytical progress calculating I1(V1,V2),I2(V1,V2)I_1(V_1,V_2), I_2(V_1,V_2).Comment: 5 pages, references adde

    Experimental Verification of 3D Plasmonic Cloaking in Free-Space

    Full text link
    We report the experimental verification of metamaterial cloaking for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite-length dielectric cylinder. We verify that scattering suppression is obtained all around the object in the near- and far-field and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our near-field and far-field measurements confirm that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects with moderate transverse cross-section at microwave frequencies.Comment: 12 pages, 8 figures, published in NJ

    Connection between low energy effective Hamiltonians and energy level statistics

    Full text link
    We study the level statistics of a non-integrable one dimensional interacting fermionic system characterized by the GOE distribution. We calculate numerically on a finite size system the level spacing distribution P(s)P(s) and the Dyson-Mehta Δ3\Delta_3 correlation. We observe that its low energy spectrum follows rather the Poisson distribution, characteristic of an integrable system, consistent with the fact that the low energy excitations of this system are described by the Luttinger model. We propose this Random Matrix Theory analysis as a probe for the existence and integrability of low energy effective Hamiltonians for strongly correlated systems.Comment: REVTEX, 5 postscript figures at the end of the fil

    Identification of Berezin-Toeplitz deformation quantization

    Full text link
    We give a complete identification of the deformation quantization which was obtained from the Berezin-Toeplitz quantization on an arbitrary compact Kaehler manifold. The deformation quantization with the opposite star-product proves to be a differential deformation quantization with separation of variables whose classifying form is explicitly calculated. Its characteristic class (which classifies star-products up to equivalence) is obtained. The proof is based on the microlocal description of the Szegoe kernel of a strictly pseudoconvex domain given by Boutet de Monvel and Sjoestrand.Comment: 26 page

    Prospects for high-z cluster detections with Planck, based on a follow-up of 28 candidates using MegaCam@CFHT

    Get PDF
    The Planck catalogue of SZ sources limits itself to a significance threshold of 4.5 to ensure a low contamination rate by false cluster candidates. This means that only the most massive clusters at redshift z>0.5, and in particular z>0.7, are expected to enter into the catalogue, with a large number of systems in that redshift regime being expected around and just below that threshold. In this paper, we follow-up a sample of SZ sources from the Planck SZ catalogues from 2013 and 2015. In the latter maps, we consider detections around and at lower significance than the threshold adopted by the Planck Collaboration. To keep the contamination rate low, our 28 candidates are chosen to have significant WISE detections, in combination with non-detections in SDSS/DSS, which effectively selects galaxy cluster candidates at redshifts z≳0.5z\gtrsim0.5. By taking r- and z-band imaging with MegaCam@CFHT, we bridge the 4000A rest-frame break over a significant redshift range, thus allowing accurate redshift estimates of red-sequence cluster galaxies up to z~0.8. After discussing the possibility that an overdensity of galaxies coincides -by chance- with a Planck SZ detection, we confirm that 16 of the candidates have likely optical counterparts to their SZ signals, 13 (6) of which have an estimated redshift z>0.5 (z>0.7). The richnesses of these systems are generally lower than expected given the halo masses estimated from the Planck maps. However, when we follow a simplistic model to correct for Eddington bias in the SZ halo mass proxy, the richnesses are consistent with a reference mass-richness relation established for clusters detected at higher significance. This illustrates the benefit of an optical follow-up, not only to obtain redshift estimates, but also to provide an independent mass proxy that is not based on the same data the clusters are detected with, and thus not subject to Eddington bias.Comment: 13 pages, 7 figures. Accepted for publication in A&

    Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system Y2−x_{2-x}Cax_xBaNiO5_5

    Full text link
    Magnetization, DC and AC bulk susceptibility of the SS=1 Haldane chain system doped with electronic holes, Y2−x_{2-x}Cax_xBaNiO5_5 (0≤\leqx≤\leq0.20), have been measured and analyzed. The most striking results are (i) a sub-Curie power law behavior of the linear susceptibility, χ(T)\chi (T)∼\sim TT−α^{-\alpha}, for temperature lower than the Haldane gap of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic transition at TTg_g = 2-3 K. These findings are consistent with (i) random couplings within the chains between the spin degrees of freedom induced by hole doping, (ii) the existence of ferromagnetic bonds that induce magnetic frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
    • …
    corecore