162 research outputs found

    Dynamics and thermodynamics of Ibuprofen conformational isomerism at the crystal/solution interface

    Full text link
    Conformational flexibility of molecules involved in crystal growth and dissolution is rarely investigated in detail, and usually considered to be negligible in the formulation of mesoscopic models of crystal growth. In this work we set out to investigate the conformational isomerism of ibuprofen as it approaches and is incorporated in the morphologically dominant {100} crystal face, in a range of different solvents - water, 1-butanol, toluene, cyclohexanone, cyclohexane, acetonitrile and trichloromethane. To this end we combine extensive molecular dynamics and well-tempered metadynamics simulations to estimate the equilibrium distribution of conformers, compute conformer-conformer transition rates, and extract the characteristic relaxation time of the conformer population in solution, adsorbed at the solid/liquid interface, incorporated in the crystal in contact with the mother solution, and in the crystal bulk. We find that, while the conformational equilibrium distribution is weakly dependent on the solvent, relaxation times are instead significantly affected by it. Furthermore, differences in the relaxation dynamics are enhanced on the crystal surface, where conformational transitions become slower and specific patways are hindered. This leads to observe that the dominant mechanisms of conformational transition can also change significantly moving from the bulk solution to the crystal interface, even for a small molecule with limited conformational flexibility such as ibuprofen. Our findings suggests that understanding conformational flexibility is key to provide an accurate description of the solid/liquid interface during crystal dissolution and growth, and therefore its relevance should be systematically assessed in the formulation of mesoscopic growth models

    Carbonatite Melts and Electrical Conductivity in the Asthenosphere

    Get PDF
    Electrically conductive regions in the Earth mantle have been interpreted to reflect the presence of either silicate melt or water dissolved in olivine. On the basis of laboratory measurements we show that molten carbonates have electrical conductivities that are 3 orders of magnitude higher than those of molten silicate and 5 orders of magnitude higher than those of hydrated olivine. High conductivities in the asthenosphere probably indicate the presence of small amounts of carbonate melt in peridotite and can therefore be interpreted in terms of carbon concentration in the upper mantle. We show that the conductivity of the Oceanic asthenosphere can be explained by 0.1 volume % of carbonatite melts on average, which agrees with the CO2 content of Mid Ocean Ridge Basalts

    Role of non-mantle CO2 in the dynamics of volcano degassing: The Mount Vesuvius example

    Get PDF
    International audienceMount Vesuvius, Italy, quiescent since A. D. 1944, is a dangerous volcano currently characterized by elevated CO2 emissions of debated origin. We show that such emissions are most likely the surface manifestation of the deep intrusion of alkalic-basaltic magma into the sedimentary carbonate basement, accompanied by sidewall assimilation and CO2 volatilization. During the last eruptive period (1631-1944), the carbonate-sourced CO2 made up 4.7-5.3 wt% of the vented magma. On a yearly basis, the resulting CO2 production rate is comparable to CO2 emissions currently measured in the volcanic area. The chemical and isotopic composition of the fumaroles supports the predominance of this crust-derived CO2 in volatile emissions at Mount Vesuvius

    I funghi entomopatogeni

    Get PDF
    Fungal entomopathogens are very interesting as biocontrol agents against important arthropods pests of crops and forests. These fungi infect their hosts mainly by penetrating through the cuticle and as consequence they can infect sucking insects, unlike entomopathogenic virus and bacteria. Most research on fungal entomopathogens only looks on a dozen species of commercially produced fungi, contained in over 170 products, and many scientific papers aim at improving production, storage and distribution techniques. The potential of using entomopathogenic fungi in biocontrol strategies different than inundative biological control was insufficiently explored because of the poor attention paid to ecological aspects. In the recent years accumulating evidence shows that several fungal entomopathogens, among them Beauveria bassiana, can colonize plants endophytically, they can be recovered from plant surface as an epiphyte, and finally they can suppress plant diseases. These interesting observations open new prospects of research and application for these versatile organisms

    Co-circulation of SARS-CoV-2 Alpha and Gamma variants in Italy, February and March 2021

    Get PDF
    Background. Several SARS-CoV-2 variants of concern (VOC) have emerged through 2020 and 2021. There is need for tools to estimate the relative transmissibility of emerging variants of SARS-CoV-2 with respect to circulating strains.AimWe aimed to assess the prevalence of co-circulating VOC in Italy and estimate their relative transmissibility.Methods. We conducted two genomic surveillance surveys on 18 February and 18 March 2021 across the whole Italian territory covering 3,243 clinical samples and developed a mathematical model that describes the dynamics of co-circulating strains.Results. The Alpha variant was already dominant on 18 February in a majority of regions/autonomous provinces (national prevalence: 54%) and almost completely replaced historical lineages by 18 March (dominant across Italy, national prevalence: 86%). We found a substantial proportion of the Gamma variant on 18 February, almost exclusively in central Italy (prevalence: 19%), which remained similar on 18 March. Nationally, the mean relative transmissibility of Alpha ranged at 1.55-1.57 times the level of historical lineages (95% CrI: 1.45-1.66). The relative transmissibility of Gamma varied according to the assumed degree of cross-protection from infection with other lineages and ranged from 1.12 (95% CrI: 1.03-1.23) with complete immune evasion to 1.39 (95% CrI: 1.26-1.56) for complete cross-protection.Conclusion. We assessed the relative advantage of competing viral strains, using a mathematical model assuming different degrees of cross-protection. We found substantial co-circulation of Alpha and Gamma in Italy. Gamma was not able to outcompete Alpha, probably because of its lower transmissibility

    Estimation of the incubation period and generation time of SARS-CoV-2 Alpha and Delta variants from contact tracing data

    Get PDF
    Quantitative information on epidemiological quantities such as the incubation period and generation time of SARS-CoV-2 variants is scarce. We analyzed a dataset collected during contact tracing activities in the province of Reggio Emilia, Italy, throughout 2021. We determined the distributions of the incubation period for the Alpha and Delta variants using information on negative PCR tests and the date of last exposure from 282 symptomatic cases. We estimated the distributions of the intrinsic generation time using a Bayesian inference approach applied to 9724 SARS-CoV-2 cases clustered in 3545 households where at least one secondary case was recorded. We estimated a mean incubation period of 4.9 days (95% credible intervals, CrI, 4.4-5.4) for Alpha and 4.5 days (95%CrI 4.0-5.0) for Delta. The intrinsic generation time was estimated to have a mean of 7.12 days (95% CrI 6.27-8.44) for Alpha and of 6.52 days (95%CrI 5.54-8.43) for Delta. The household serial interval was 2.43 days (95%CrI 2.29-2.58) for Alpha and 2.74 days (95%CrI 2.62-2.88) for Delta, and the estimated proportion of pre-symptomatic transmission was 48-51% for both variants. These results indicate limited differences in the incubation period and intrinsic generation time of SARS-CoV-2 variants Alpha and Delta compared to ancestral lineages

    The "Investigating and translating genomic evidence for public health response to SARS-CoV-2 (INSIDE SARS-CoV-2)" project - Network of excellence. Commentary

    Get PDF
    The “Investigating and translating genomic evidence for public health response to SARS- CoV-2 (INSIDE SARS-CoV-2)” project is part of the initiative “Joint science and tech- nology cooperation call for joint project proposals for the years 2021-2023” promoted by the Italian Ministry of Foreign Affairs and International Cooperation (MAECI) and the Republic of India. To start the project activities, the pandemic response and the epidemiological situation in Italy and in India, together with the genomic surveillance strategies for SARS-CoV-2 virus in the two countries, are here described

    SARS-CoV-2 transmission patterns in educational settings during the Alpha wave in Reggio-Emilia, Italy

    Get PDF
    : Different monitoring and control policies have been implemented in schools to minimize the spread of SARS-CoV-2. Transmission in schools has been hard to quantify due to the large proportion of asymptomatic carriers in young individuals. We applied a Bayesian approach to reconstruct the transmission chains between 284 SARS-CoV-2 infections ascertained during 87 school outbreak investigations conducted between March and April 2021 in Italy. Under the policy of reactive quarantines, we found that 42.5% (95%CrI: 29.5-54.3%) of infections among school attendees were caused by school contacts. The mean number of secondary cases infected at school by a positive individual during in-person education was estimated to be 0.33 (95%CrI: 0.23-0.43), with marked heterogeneity across individuals. Specifically, we estimated that only 26.0% (95%CrI: 17.6-34.1%) of students and school personnel who tested positive during in-person education caused at least one secondary infection at school. Positive individuals who attended school for at least 6 days before being isolated or quarantined infected on average 0.49 (95%CrI: 0.14-0.83) secondary cases. Our findings provide quantitative insights on the contribution of school transmission to the spread of SARS-CoV-2 in young individuals. Identifying positive cases within 5 days after exposure to their infector could reduce onward transmission at school by at least 30%
    • …
    corecore