2,818 research outputs found

    Evaluating Wildlife Vulnerability to Mercury Pollution From Artisinal and Small-Scale Gold Mining in Madre de Dios, Peru

    Get PDF
    “Illegal, artisanal and small-scale gold mining (ASGM) often occurs in remote highly biodiverse areas, such as the Madre de Dios region of Peru. Mercury used in gold mining bioaccumulates in the environment and poses developmental, hormonal, and neurological threats to wildlife. The impact of ASGM on biodiversity remains largely unknown. We used geographic information science to create a spatial model of pollution risk from mining sites, in order to predict locations and species assemblages at risk. Multicriteria evaluation was used to determine how flow accumulation, distance from mining areas, total suspended sediment load, and soil porosity influenced the vulnerability of regions to mercury pollution. Results suggest that there is considerable opportunity for protection of areas with high biodiversity and vulnerability north of the Madre de Dios River where much of the land is not protected. Our study highlights the need for future ASGM research to consider more than deforestation risk alone while protecting the areas’ unmatched biodiversity.

    Full stress tensor measurement using colour centres in diamond

    Get PDF
    Stress and strain are important factors in determining the mechanical, electronic, and optical properties of materials, relating to each other by the material's elasticity or stiffness. Both are represented by second rank field tensors with, in general, six independent components. Measurements of these quantities are usually achieved by measuring a property that depends on the translational symmetry and periodicity of the crystal lattice, such as optical phonon energies using Raman spectroscopy, the electronic band gap using cathodoluminescence, photoelasticity via the optical birefringence, or Electron Back Scattering Diffraction (EBSD). A reciprocal relationship therefore exists between the maximum sensitivity of the measurements and the spatial resolution. Furthermore, of these techniques, only EBSD and off-axis Raman spectroscopy allow measurement of all six components of the stress tensor, but neither is able to provide full 3D maps. Here we demonstrate a method for measuring the full stress tensor in diamond, using the spectral and optical polarization properties of the photoluminescence from individual nitrogen vacancy (NV) colour centres. We demonstrate a sensitivity of order 10 MPa, limited by local fluctuations in the stress in the sample, and corresponding to a strain of about 10^-5, comparable with the best sensitivity provided by other techniques. By using the colour centres as built-in local sensors, the technique overcomes the reciprocal relationship between spatial resolution and sensitivity and offers the potential for measuring strains as small as 10^-9 at spatial resolution of order 10 nm. Furthermore it provides a straightforward route to volumetric stress mapping. Aside from its value in understanding strain distributions in diamond, this new approach to stress and strain measurement could be adapted for use in micro or nanoscale sensors.Comment: 12 pages, 5 figures - supplementary informations included in appendi

    Integrated Diamond Optics for Single Photon Detection

    Full text link
    Optical detection of single defect centers in the solid state is a key element of novel quantum technologies. This includes the generation of single photons and quantum information processing. Unfortunately the brightness of such atomic emitters is limited. Therefore we experimentally demonstrate a novel and simple approach that uses off-the-shelf optical elements. The key component is a solid immersion lens made of diamond, the host material for single color centers. We improve the excitation and detection of single emitters by one order of magnitude, as predicted by theory.Comment: 10 pages, 3 figure

    It is Not Black and White: A Comparison of Skin Tone by Playing Position in the Premier League and English Football

    Get PDF
    Within the present manuscript we explore the role of skin tone on playing position within English football’s top four professional leagues. Player data (N = 4,515) was collected across five seasons (2010-2015). Results indicate that in general, darker skin toned players are more likely to operate within peripheral rather than central positions. Using both one and two-way ANOVAs, results suggest significant differences between skin tone and individual playing positions. Between league differences were, however, non-significant. Although darker skin toned players are still more likely to occupy peripheral positions, the situation is more nuanced than first thought. Instead of segregating players by central versus peripheral roles, it appears that darker skin toned players occupy positions associated with athleticism and strength. In contrast, lighter skin toned players appear to fulfill positions requiring organizational skills and creativity

    Remarks on Duality Transformations and Generalized Stabilizer States

    Get PDF
    We consider the transformation of Hamilton operators under various sets of quantum operations acting simultaneously on all adjacent pairs of particles. We find mappings between Hamilton operators analogous to duality transformations as well as exact characterizations of ground states employing non-Hermitean eigenvalue equations and use this to motivate a generalization of the stabilizer formalism to non-Hermitean operators. The resulting class of states is larger than that of standard stabilizer states and allows for example for continuous variation of local entropies rather than the discrete values taken on stabilizer states and the exact description of certain ground states of Hamilton operators.Comment: Contribution to Special Issue in Journal of Modern Optics celebrating the 60th birthday of Peter Knigh

    First complete genome sequence of infectious laryngotracheitis virus

    Get PDF
    BACKGROUND: Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. RESULTS: The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. CONCLUSIONS: This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains

    Deterministic delivery of remote entanglement on a quantum network

    Full text link
    Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes. Moving beyond current two-node networks requires the rate of entanglement generation between nodes to exceed their decoherence rates. Beyond this critical threshold, intrinsically probabilistic entangling protocols can be subsumed into a powerful building block that deterministically provides remote entangled links at pre-specified times. Here we surpass this threshold using diamond spin qubit nodes separated by 2 metres. We realise a fully heralded single-photon entanglement protocol that achieves entangling rates up to 39 Hz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform. At the same time, we suppress the decoherence rate of remote entangled states to 5 Hz by dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we are able to deterministically deliver a fresh remote state with average entanglement fidelity exceeding 0.5 at every clock cycle of ∼\sim100 ms without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.Comment: v2 - updated to include relevant citatio
    • …
    corecore