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We introduce a method for measuring the full stress tensor in a crystal utilising the properties of

individual point defects. By measuring the perturbation to the electronic states of three point

defects with C3v symmetry in a cubic crystal, sufficient information is obtained to construct all six

independent components of the symmetric stress tensor. We demonstrate the method using

photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the

inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain

measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other

materials in which individual point defects can be interrogated. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4819834]

Since the proposal by Kane for a quantum computer

based on phosphorus impurities in silicon,1 considerable

effort has focused on developing solid state quantum spin-

tronic devices involving individually addressable qubits in

crystalline materials. The properties of these solid state

qubits depend significantly on the local crystal environment

such as lattice strain and the presence of extraneous impur-

ities and defects, and so the ability to probe these features

will be essential in developing robust devices. However,

measuring stress and strain distributions on the length scales

required presents a significant challenge. Existing methods

for measuring strain in materials, Raman spectroscopy,2

cathodoluminescence,3 photoelasticity,4 and electron back

scattering diffraction (EBSD),5 are incapable of nanoscale

spatial resolution since they measure properties (phonon

energies, band gaps) that depend on the translational symme-

try and periodicity of the crystal lattice, and achieve high

sensitivity only by averaging over a large number of lattice

periods. Moreover, the fact that stress and strain are repre-

sented by second rank field tensors with, in general, six inde-

pendent components,6 means that a full stress/strain map

requires at least six parameters to be measured for each point

in space. Only EBSD and off-axis Raman spectroscopy

allow measurement of all six components of the strain ten-

sor, and neither of these is well suited to volumetric imaging.

In this letter, we present a method for measuring the full

stress tensor in diamond using the properties of point defects,

namely, fluorescence from negatively charged nitrogen-

vacancy (NV) centers. Since the NV centers are localised

effectively to single lattice sites within the crystal and pos-

sess electronic states that are sensitive to minute changes in

the relative positions of the neighbouring atoms, high spatial

resolution and high sensitivity are achieved simultaneously.

With a suitable distribution of NV centers in the material

and using high resolution microscopy,7 the method offers a

means to map the strain tensor with �10 nm spatial resolu-

tion, sufficient for the identification of other lattice defects

such as substitutional nitrogen via their local strain fields.

NV centers in diamond provide an ideal system for this

study: they are bright, stable emitters8 with well understood

strain signatures in the optical spectrum.9–13 They are also

leading candidates as solid state spin qubits,14,15 and with a

recently reported 13C spin coherence time in excess of a sec-

ond16 and NV gate times of order nanoseconds,17 robust

quantum processors involving arrays of NV centers coupled

to nuclear spins are an increasingly realistic prospect.

Moreover, the engineering of strain in diamond may itself

be important to the functionality of NV center based devi-

ces—identifying NV centers with appropriate strain pertur-

bations has been central to the demonstration of coherent

population trapping18 and spin-photon entanglement.19

The NV defect comprises a substitutional nitrogen atom

and a vacancy in an adjacent lattice site along one of the four

h111i crystal axes of the diamond lattice. The electronic

structure of the color center9–11 includes a 3A2 orbital singlet

ground state and 3E orbital doublet optically excited state at

1.945 eV, the electron wave functions of which are linear

superpositions of the dangling sp3 orbitals directed in to the

vacancy.20 It is this 3E!3A2 optical transition that we will

use to demonstrate the stress tensor measurement.

According to the group operator replacement theorem,22

the effect of strain on an individual NV center is indistin-

guishable from that of a vector field, since the perturbation

Hamiltonian acting on the C3v symmetry defect can be sepa-

rated into three irreducible components

Hstr ¼ SðA1Þ
z þ SðExÞ

x þ SðEyÞ
y ; (1)

where the symmetries of the terms are given in the parenthe-

ses. Axes ðx; y; zÞ are defined with z parallel to the NV axis

and x lying in one of the three mirror planes, as shown in

Figure 1(a). With only three components to the stress
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perturbation, it is clearly not possible to determine the full

stress tensor from the properties of a single NV center. The

key finding of this work is that measurement of the full ten-

sor becomes possible if measurements are performed on

three differently oriented centers experiencing the same

strain field.

The three components of the perturbation hamiltonian in

Eq. (1) can be written in terms of the components of the

stress tensor rij, grouped to share the corresponding symme-

try.23 For simplicity, we consider here a stress perturbation

that greatly exceeds the spin-orbit and spin-spin interaction

energies, whereby the six 3E states form two branches corre-

sponding to orthogonal spatial orbitals Ex0 and Ey0 , and the

perturbation can be expressed as a secular matrix in the

ðEx;EyÞ basis23

aþ b c
c a� b

� �
; (2)

where a ¼ hEjSzjEi � hAjSzjAi, b ¼ hEjSxjEi, and

c ¼ hEjSyjEi. The eigenvalues and eigenvectors of this secu-

lar matrix give the transition energies and dipole orientations

in the ðx; yÞ plane, respectively. The mean energy shift is a

and the splitting is d ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
, while the E dipoles are

rotated by an angle / ¼ 1=2 arctanðc=bÞ relative to x and y
(Figure 1(b)). For a [111] oriented NV center, this gives

a ¼ A1ðrxx þ ryy þ rzzÞ þ A2ð2rzz � rxx � ryyÞ;
b ¼ ðBþ CÞðrxx � ryyÞ þ

ffiffiffi
2
p
ð2B� CÞrxz ;

c ¼ �2ðBþ CÞrxy þ
ffiffiffi
2
p
ð2B� CÞryz;

(3)

where parameters A1, A2, B, and C have been determined as

1.47, �3.85, �1.04, and �1.69 meV/GPa, respectively.24

Referred to the crystal ðX; Y; ZÞ axes, the equivalent equa-

tions are

a ¼ A1ðrXX þ rYY þ rZZÞ þ 2A2ðrYZ þ rZX þ rXYÞ;
b ¼ Bð2rZZ � rXX � rYYÞ þ Cð2rXY � rYZ � rZXÞ;
c ¼

ffiffiffi
3
p

BðrXX � rYYÞ þ
ffiffiffi
3
p

CðrYZ � rZXÞ:
(4)

The equations for an NV center with one of the three

other orientations can now be obtained by performing suc-

cessive p
2

rotations about Z. To obtain all six components of

the tensor, it is necessary to measure a, b, and c for three NV

centers that experience the same stress field but which have

different orientations in the lattice. These constitute an over-

determined set of nine linear equations with six unknown

variables, from which a unique solution is obtained using the

Moore-Penrose pseudoinverse method.25

To demonstrate this method for establishing the stress

tensor, we selected a sample of monocrystalline diamond

grown by plasma assisted chemical vapour deposition,26

which displays PL from isolated NV centers in a region of

particularly high grown-in stress (Figure 2(a)). At a tempera-

ture of 77 K, many of the zero phonon lines (ZPLs) reveal

clear splittings of up to 0.8 nm or 2.4 meV (Figure 2(b)). The

growth direction is Z k ½001�, (also the viewing axis) such

that the integrated emission of a given NV center is approxi-

mately 3 : 1 polarized, allowing easy discrimination between

NVs with axis parallel to [111] or ½�1�11� and those with axis

parallel to ½�111� or ½1�11� (Figure 1(c)). The ambiguity (effec-

tively a mirror in Z) in identifying the orientation of a given

NV center is not possible to resolve with this sample geome-

try without application of an additional perturbation, but

presents only a minor limitation to the results. We note that a

[111] viewing axis would remove this ambiguity.27

The two emission lines of the ZPL doublet are linearly

polarized along the respective dipole axes. The measured

projections of these polarizations onto the (001) image plane

allow determination of the angle / and thus we obtain

c ¼ d sinð2/) and b ¼ d cosð2/Þ. As the Z-projections of

individual NV centers are not known, we performed meas-

urements on several proximal centers and looked for group-

ings of parameters to identify different defect orientations.

An example of a group of seven NVs studied is that labeled

1 to 7 in Figure 2(a). Polar plots of the optical polarization

from four of the centers are shown in Figure 2(c), and the

corresponding a; b; c values listed in Table I.

In two cases, pairs of NVs that are spatially close (2 and

3 and 6 and 7) give very similar values for all parameters

measured. The conclusion is that these NVs are co-oriented,

and are not affected substantially by local perturbations to the

lattice. Of the 22 NVs measured in total for this study, we

found six examples of pairs of proximal NVs whose parame-

ters agreed to better than 10%, suggesting that for these NVs

the assumption of a dominant long-range stress field is valid.

Several NVs also revealed behaviour that was inconsistent

with the assumption, presumably resulting from the presence

of a strong local stress field due to a nearby defect such as a

lattice vacancy, or an electric field due to a trapped charge.

FIG. 1. (a) Schematic of the NV structure and definition of NV axes ðx; y; zÞ
and crystal axes ðX; Y; ZÞ for an NV center with z k ½111�, whereby x k ½�1�12�
and y k ½1�10�. The cube represents 1

8
of the cubic unit cell of the diamond

crystal. (b) Rotation of the Ex0 and Ey0 orbitals relative to NV axes x and y
under a symmetry-breaking stress. Ex0 is taken to be the higher energy or-

bital, consistent with Ref. 21. (c) Projection onto the ð001Þ image plane

ðXYÞ of the four possible orientations of NVs relative to the crystal axes. (d)

Projection of the Ex0 ;y0 orbitals in (b) onto the image plane.

101905-2 Grazioso et al. Appl. Phys. Lett. 103, 101905 (2013)
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We now use the data for NVs 1, (2 or 3), and 4 to calcu-

late the local stress tensor in the top right of the image.

Choosing the orientations NV1k ½�111�, NV(2 or 3)k ½1�11�,
and NV4k ½111� yields the stress tensor

r ¼
290ð5Þ 90ð0Þ 66ð0Þ
90ð0Þ 758ð0Þ 645ð0Þ
66ð0Þ 645ð0Þ �14ð2Þ

0
B@

1
CAMPa; (5)

where the figures presented are the mean values (standard

deviations) for the tensor components calculated using the

sets {NV1, NV2, NV4} and {NV1, NV3, NV4}. The 6 val-

ues in rXZ and rYZ indicate the effect of inverting Z for all

three centers. The tensor indicates a stress that is primarily

biaxial in the (001) growth plane, with principal axes closely

aligned to the [100] and [010] crystal axes. Reversing the

choice of orientation for NV4 (only) creates a distinct config-

uration and results in the tensor

r0 ¼
259ð1Þ 98ð2Þ 644ð2Þ
98ð2Þ 758ð4Þ 627ð2Þ

644ð2Þ 627ð2Þ �31ð6Þ

0
B@

1
CAMPa: (6)

The most significant differences between r and r0 are in

the tensor components containing Z, corresponding to the Z
reflection of NV4.

We now use Eqs. (4) to recalculate a; b, and c for each

of the NV orientations to test of the self-consistency of the

overdetermined set of equations. Tensor r yields the results

presented in Table II which reproduce the parameters for

NVs 1–4 to within about 10%. The orientations of NVs 5–7

appear most likely to be [111]; that their parameters differ

somewhat from those of NV4 is attributed to longer range

changes in the stress field.

Using a Young’s modulus for diamond of 1200 GPa, the

�10 MPa sensitivity demonstrated here corresponds to a

strain of �10�5. Much higher sensitivities can be achieved at

lower temperatures, as the optical transition line widths

reduce proportionally to T5 due to the dynamic Jahn Teller

effect.29 Photoluminescence excitation spectroscopy at liquid

helium temperatures can be used to measure shifts about

100 MHz, increasing the strain sensitivity to �10�8. For

determination of the full stress tensor under ambient condi-

tions, it is equally possible to measure the perturbation to the

electron spin state of the center using optically detected mag-

netic resonance.27 Dolde et al.30 have demonstrated sensitiv-

ity of this spin transition to electric fields of order 1 kV cm�1

Hz�
1
2, suggesting that stresses of order 100 kPa Hz�

1
2 could

be measured in this way. With an NV electron spin dephas-

ing time of order 1 ms, this suggests a sensitivity of a few

MPa may be achieved, equivalent to a strain of �10�6.

NV centers displaying behavior inconsistent with the

effect of long range strain indicate the presence of an addi-

tional local strain field due to a nearby lattice defect. The

magnitude of the strain field from a single substitutional

nitrogen is approximately 6� 10�5=r3 at a distance r meas-

ured in nanometers,28 allowing the demonstrated sensitivity

of �10�5 and maximum sensitivity of �10�8 to be con-

verted to ranges of around 2 nm and 20 nm, respectively.

FIG. 2. Photoluminescence from individual NV centers in highly strained material at 77 K: (a) PL image of the sample area of interest with the seven NV cen-

ters used in this study labeled 1–7; (b) PL spectrum of a single NV center with a split zero phonon line (inset); (c) measured polarization data for NVs 1–4.

The radius represents the emission intensity and the angle is that of a polarizing filter in the collection optics, /p. The solid curves are fits to the function I0 þ
DI cos2ð/p þ /0Þ where I0, DI, and /0 are fitting parameters.

TABLE I. Polarisation and energy shift data for seven NV centers labeled in

Figure 2. Errors in each of the three parameters are estimated to be 0.1 meV.

Defect Angle a ðmeVÞ b ðmeVÞ c ðmeVÞ

NV1 90 1.97 1.71 �0.69

NV2 90 2.36 1.39 �0.56

NV3 90 2.35 1.35 �0.60

NV4 0 1.32 0.50 1.38

NV5 0 1.14 0.16 1.19

NV6 0 1.69 0.30 1.09

NV7 0 1.74 0.35 1.05

TABLE II. Recalculated energy perturbations for the four NV orientations

using stress tensor r.

NV axis angle a ðmeVÞ b ðmeVÞ c ðmeVÞ

½111� 0 1.22 0.73 0.96

½1�11� 90 2.51 1.36 �0.99

½�1�11� 0 0.43 0.90 0.73

½�111� 90 1.91 1.49 �0.70

101905-3 Grazioso et al. Appl. Phys. Lett. 103, 101905 (2013)
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Such information may be useful where coupled systems, or

conversely where NV centers free of influence from nearby

defects, are required.

In summary, we have shown that the full stress tensor in

diamond can be measured using fluorescence from NV cen-

ters. The method will be useful for developing diamond-

based quantum devices that require detailed knowledge of

the local crystal environment and has broader potential for

use in high sensitivity nanoscale stress analysis in suitable

materials.
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