161 research outputs found

    Biomarkers for physical frailty and sarcopenia : state of the science and future developments

    Get PDF
    Physical frailty and sarcopenia are two common and largely overlapping geriatric conditions upstream of the disabling cascade. The lack of a unique operational definition for physical frailty and sarcopenia and the complex underlying pathophysiology make the development of biomarkers for these conditions extremely challenging. Indeed, the current definitional ambiguities of physical frailty and sarcopenia, together with their heterogeneous clinical manifestations, impact the accuracy, specificity, and sensitivity of individual biomarkers proposed so far. In this review, the current state of the art in the development of biomarkers for physical frailty and sarcopenia is presented. A novel approach for biomarker identification and validation is also introduced that moves from the 'one fits all' paradigm to a multivariate methodology

    Glucose-induced hemodynamic and metabolic response of skeletal muscle in heart failure patients with reduced vs. preserved ejection fraction-a pilot study

    Get PDF
    (1) BACKGROUND: Insulin resistance (IR) is a characteristic pathophysiologic feature in heart failure (HF). We tested the hypothesis that skeletal muscle metabolism is differently impaired in patients with reduced (HFrEF) vs. preserved (HFpEF) ejection fraction. (2) METHODS: carbohydrate and lipid metabolism was studied in situ by intramuscular microdialysis in patients with HFrEF (59 ± 14y, NYHA I-III) and HFpEF (65 ± 10y, NYHA I-II) vs. healthy subjects of similar age during the oral glucose load (oGL); (3) RESULTS: There were no difference in fasting serum and interstitial parameters between the groups. Blood and dialysate glucose increased significantly in HFpEF vs. HFrEF and controls upon oGT (both (p) < 0.0001), while insulin increased significantly in HFrEF vs. HFpEF and controls ((p) < 0.0005). Muscle tissue perfusion tended to be lower in HFrEF vs. HFpEF and controls after the oGL ((p) = 0.057). There were no differences in postprandial increases in dialysate lactate and pyruvate. Postprandial dialysate glycerol was higher in HFpEF vs. HFrEF and controls upon oGL ((p) = 0.0016); (4) CONCLUSION: A pattern of muscle glucose metabolism is distinctly different in patients with HFrEF vs. HFpEF. While postprandial IR was characterized by impaired tissue perfusion and higher compensatory insulin secretion in HFrEF, reduced muscle glucose uptake and a blunted antilipolytic effect of insulin were found in HFpEF

    Step-by-step diagnosis and management of the nocebo/drucebo effect in statin-associated muscle symptoms patients: a position paper from the International Lipid Expert Panel (ILEP)

    Get PDF
    Statin intolerance is a clinical syndrome whereby adverse effects (AEs) associated with statin therapy [most commonly statin-associated muscle symptoms (SAMS)] result in the discontinuation of therapy and consequently increase the risk of adverse cardiovascular outcomes. However, complete statin intolerance occurs in only a small minority of treated patients (estimated prevalence of only 3-5%). Many perceived AEs are misattributed (e.g. physical musculoskeletal injury and inflammatory myopathies), and subjective symptoms occur as a result of the fact that patients expect them to do so when taking medicines (the nocebo/drucebo effect)-what might be truth even for over 50% of all patients with muscle weakness/pain. Clear guidance is necessary to enable the optimal management of plasma in real-world clinical practice in patients who experience subjective AEs. In this Position Paper of the International Lipid Expert Panel (ILEP), we present a step-by-step patient-centred approach to the identification and management of SAMS with a particular focus on strategies to prevent and manage the nocebo/drucebo effect and to improve long-term compliance with lipid-lowering therapy

    The Conceptual Definition of Sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS)

    Get PDF
    \ua9 2024 The Author(s).Importance: Sarcopenia, the age-related loss of muscle mass and strength/function, is an important clinical condition. However, no international consensus on the definition exists. Objective: The Global Leadership Initiative in Sarcopenia (GLIS) aimed to address this by establishing the global conceptual definition of sarcopenia. Design: The GLIS steering committee was formed in 2019-21 with representatives from all relevant scientific societies worldwide. During this time, the steering committee developed a set of statements on the topic and invited members from these societies to participate in a two-phase International Delphi Study. Between 2022 and 2023, participants ranked their agreement with a set of statements using an online survey tool (SurveyMonkey). Statements were categorised based on predefined thresholds: strong agreement (>80%), moderate agreement (70-80%) and low agreement (<70%). Statements with strong agreement were accepted, statements with low agreement were rejected and those with moderate agreement were reintroduced until consensus was reached. Results: 107 participants (mean age: 54 \ub1 12 years [1 missing age], 64% men) from 29 countries across 7 continents/regions completed the Delphi survey. Twenty statements were found to have a strong agreement. These included; 6 statements on \u27general aspects of sarcopenia\u27 (strongest agreement: the prevalence of sarcopenia increases with age (98.3%)), 3 statements on \u27components of sarcopenia\u27 (muscle mass (89.4%), muscle strength (93.1%) and muscle-specific strength (80.8%) should all be a part of the conceptual definition of sarcopenia)) and 11 statements on \u27outcomes of sarcopenia\u27 (strongest agreement: sarcopenia increases the risk of impaired physical performance (97.9%)). A key finding of the Delphi survey was that muscle mass, muscle strength and muscle-specific strength were all accepted as \u27components of sarcopenia\u27, whereas impaired physical performance was accepted as an \u27outcome\u27 rather than a \u27component\u27 of sarcopenia. Conclusion and relevance: The GLIS has created the first global conceptual definition of sarcopenia, which will now serve to develop an operational definition for clinical and research settings

    Multicomponent intervention to prevent mobility disability in frail older adults: randomised controlled trial (SPRINTT project)

    Get PDF
    Objective: To determine whether a multicomponent intervention based on physical activity with technological support and nutritional counselling prevents mobility disability in older adults with physical frailty and sarcopenia. Design: Evaluator blinded, randomised controlled trial. Setting: 16 clinical sites across 11 European countries, January 2016 to 31 October 2019. Participants: 1519 community dwelling men and women aged 70 years or older with physical frailty and sarcopenia, operationalised as the co-occurrence of low functional status, defined as a short physical performance battery (SPPB) score of 3 to 9, low appendicular lean mass, and ability to independently walk 400 m. 760 participants were randomised to a multicomponent intervention and 759 received education on healthy ageing (controls). Interventions: The multicomponent intervention comprised moderate intensity physical activity twice weekly at a centre and up to four times weekly at home. Actimetry data were used to tailor the intervention. Participants also received personalised nutritional counselling. Control participants received education on healthy ageing once a month. Interventions and follow-up lasted for up to 36 months. Main outcome measures: The primary outcome was mobility disability (inability to independently walk 400 m in <15 minutes). Persistent mobility disability (inability to walk 400 m on two consecutive occasions) and changes from baseline to 24 and 36 months in physical performance, muscle strength, and appendicular lean mass were analysed as pre-planned secondary outcomes. Primary comparisons were conducted in participants with baseline SPPB scores of 3-7 (n=1205). Those with SPPB scores of 8 or 9 (n=314) were analysed separately for exploratory purposes. Results: Mean age of the 1519 participants (1088 women) was 78.9 (standard deviation 5.8) years. The average follow-up was 26.4 (SD 9.5) months. Among participants with SPPB scores of 3-7, mobility disability occurred in 283/605 (46.8%) assigned to the multicomponent intervention and 316/600 (52.7%) controls (hazard ratio 0.78, 95% confidence interval 0.67 to 0.92; P=0.005). Persistent mobility disability occurred in 127/605 (21.0%) participants assigned to the multicomponent intervention and 150/600 (25.0%) controls (0.79, 0.62 to 1.01; P=0.06). The between group difference in SPPB score was 0.8 points (95% confidence interval 0.5 to 1.1 points; P<0.001) and 1.0 point (95% confidence interval 0.5 to 1.6 points; P<0.001) in favour of the multicomponent intervention at 24 and 36 months, respectively. The decline in handgrip strength at 24 months was smaller in women assigned to the multicomponent intervention than to control (0.9 kg, 95% confidence interval 0.1 to 1.6 kg; P=0.028). Women in the multicomponent intervention arm lost 0.24 kg and 0.49 kg less appendicular lean mass than controls at 24 months (95% confidence interval 0.10 to 0.39 kg; P<0.001) and 36 months (0.26 to 0.73 kg; P<0.001), respectively. Serious adverse events occurred in 237/605 (39.2%) participants assigned to the multicomponent intervention and 216/600 (36.0%) controls (risk ratio 1.09, 95% confidence interval 0.94 to 1.26). In participants with SPPB scores of 8 or 9, mobility disability occurred in 46/155 (29.7%) in the multicomponent intervention and 38/159 (23.9%) controls (hazard ratio 1.25, 95% confidence interval 0.79 to 1.95; P=0.34). Conclusions: A multicomponent intervention was associated with a reduction in the incidence of mobility disability in older adults with physical frailty and sarcopenia and SPPB scores of 3-7. Physical frailty and sarcopenia may be targeted to preserve mobility in vulnerable older people

    Cardiovascular and metabolic determinants of quality of life in patients with cancer

    Get PDF
    AIMS: Maintaining quality of life (QoL) in patients with cancer has gathered significant interest, but little is known about its major determinants. We sought to identify determinants of QoL in patients undergoing cancer treatment as well as in treatment-naïve patients about to commence such therapy. METHODS AND RESULTS: QoL was assessed in 283 patients with cancer using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 questionnaire. All patients underwent a battery of tests including physical examination, resting electrocardiogram, hand grip strength, and biochemistry assessment. Using multivariable logistic regression, we found that age [odds ratio (OR) 0.954, 95% confidence interval (CI) 0.916-0.994], resting heart rate (OR 1.036, 95% CI 1.004-1.068), hand grip strength (OR 0.932, 95% CI 0.878-0.990), and the presence of cachexia (OR 4.334, 95% CI 1.767-10.631) and dyspnoea (OR 3.725, 95% CI 1.540-9.010; all P < 0.05) remained independently predictive of reduced QoL. CONCLUSIONS: Therefore, it may be reasonable to address circumstances that are affecting muscle mass, body weight, and heart rate to maintaining QoL; however, prospective studies to test these endpoints are required

    The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: A position paper from the International Lipid Expert Panel (ILEP)

    Get PDF
    Proteins play a crucial role in metabolism, in maintaining fluid and acid-base balance and antibody synthesis. Dietary proteins are important nutrients and are classified into: 1) animal proteins (meat, fish, poultry, eggs and dairy), and, 2) plant proteins (legumes, nuts and soy). Dietary modification is one of the most important lifestyle changes that has been shown to significantly decrease the risk of cardiovascular (CV) disease (CVD) by attenuating related risk factors. The CVD burden is reduced by optimum diet through replacement of unprocessed meat with low saturated fat, animal proteins and plant proteins. In view of the available evidence, it has become acceptable to emphasize the role of optimum nutrition to maintain arterial and CV health. Such healthy diets are thought to increase satiety, facilitate weight loss, and improve CV risk. Different studies have compared the benefits of omnivorous and vegetarian diets. Animal protein related risk has been suggested to be greater with red or processed meat over and above poultry, fish and nuts, which carry a lower risk for CVD. In contrast, others have shown no association of red meat intake with CVD. The aim of this expert opinion recommendation was to elucidate the different impact of animal vs vegetable protein on modifying cardiometabolic risk factors. Many observational and interventional studies confirmed that increasing protein intake, especially plant-based proteins and certain animal-based proteins (poultry, fish, unprocessed red meat low in saturated fats and low-fat dairy products) have a positive effect in modifying cardiometabolic risk factors. Red meat intake correlates with increased CVD risk, mainly because of its non-protein ingredients (saturated fats). However, the way red meat is cooked and preserved matters. Thus, it is recommended to substitute red meat with poultry or fish in order to lower CVD risk. Specific amino acids have favourable results in modifying major risk factors for CVD, such as hypertension. Apart from meat, other animal-source proteins, like those found in dairy products (especially whey protein) are inversely correlated to hypertension, obesity and insulin resistance

    Efficacy and safety of bempedoic acid for the treatment of hypercholesterolemia: A systematic review and meta-analysis

    Get PDF
    Background Bempedoic acid is a first-in-class lipid-lowering drug recommended by guidelines for the treatment of hypercholesterolemia. Our objective was to estimate its average effect on plasma lipids in humans and its safety profile. Methods and findings We carried out a systematic review and meta-analysis of phase II and III randomized controlled trials on bempedoic acid (PROSPERO: CRD42019129687). PubMed (Medline), Scopus, Google Scholar, and Web of Science databases were searched, with no language restriction, from inception to 5 August 2019. We included 10 RCTs (n = 3,788) comprising 26 arms (active arm [n = 2,460]; control arm [n = 1,328]). Effect sizes for changes in lipids and high-sensitivity C-reactive protein (hsCRP) serum concentration were expressed as mean differences (MDs) and 95% confidence intervals (CIs). For safety analyses, odds ratios (ORs) and 95% CIs were calculated using the Mantel–Haenszel method. Bempedoic acid significantly reduced total cholesterol (MD −14.94%; 95% CI −17.31%, −12.57%; p &lt; 0.001), non-high-density lipoprotein cholesterol (MD −18.17%; 95% CI −21.14%, −15.19%; p &lt; 0.001), low-density lipoprotein cholesterol (MD −22.94%; 95% CI −26.63%, −19.25%; p &lt; 0.001), low-density lipoprotein particle number (MD −20.67%; 95% CI −23.84%, −17.48%; p &lt; 0.001), apolipoprotein B (MD −15.18%; 95% CI −17.41%, −12.95%; p &lt; 0.001), high-density lipoprotein cholesterol (MD −5.83%; 95% CI −6.14%, −5.52%; p &lt; 0.001), high-density lipoprotein particle number (MD −3.21%; 95% CI −6.40%, −0.02%; p = 0.049), and hsCRP (MD −27.03%; 95% CI −31.42%, −22.64%; p &lt; 0.001). Bempedoic acid did not significantly modify triglyceride level (MD −1.51%; 95% CI −3.75%, 0.74%; p = 0.189), verylow-density lipoprotein particle number (MD 3.79%; 95% CI −9.81%, 17.39%; p = 0.585), and apolipoprotein A-1 (MD −1.83%; 95% CI −5.23%, 1.56%; p = 0.290). Treatment with bempedoic acid was positively associated with an increased risk of discontinuation of treatment (OR 1.37; 95% CI 1.06, 1.76; p = 0.015), elevated serum uric acid (OR 3.55; 95% CI 1.03, 12.27; p = 0.045), elevated liver enzymes (OR 4.28; 95% CI 1.34, 13.71; p = 0.014), and elevated creatine kinase (OR 3.79; 95% CI 1.06, 13.51; p = 0.04), though it was strongly associated with a decreased risk of new onset or worsening diabetes (OR 0.59; 95% CI 0.39, 0.90; p = 0.01). The main limitation of this meta-analysis is related to the relatively small number of individuals involved in the studies, which were often short or middle term in length. Conclusions Our results show that bempedoic acid has favorable effects on lipid profile and hsCRP levels and an acceptable safety profile. Further well-designed studies are needed to explore its longer-term safety
    corecore