23 research outputs found

    A modeling study of the seasonal oxygen budget of the global ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05017, doi:10.1029/2006JC003731.An ecosystem model embedded in a global ocean general circulation model is used to quantify roles of biological and physical processes on seasonal oxygen variations. We find that the thermally induced seasonal net outgassing (SNO) of oxygen is overestimated by about 30% if gas phase equilibrium is assumed, and we find that seasonal variations in thermocline oxygen due to biology are approximated well using the oxygen anomaly. Outside the tropics and the north Indian Ocean, biological SNO is, on average, 56% of net community production (defined as net oxygen production above 76 m) during the outgassing period and 35% of annual net community production. In the same region the seasonal drawdown of the oxygen anomaly within the upper thermocline (76–500 m) is 76% of the remineralization during the drawdown and 48% of annual remineralization. Applying model-derived relationships to observed O2 climatologies and using independent estimates for tropical and monsoonal systems, we estimate global net community production to be 14.9 ± 2.5 Pg C yr−1.R.N., X.J., and F.L. were supported from the following grants: NOAA NA16GP2987, NASA NAG5-6451, and NSF OCE-9711937

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS)

    Get PDF
    The Joint Global Ocean Flux Study (JGOFS) has completed a decade of intensive process and time-series studies on the regional and temporal dynamics of biogeochemical processes in five diverse ocean basins. Its field program also included a global survey of dissolved inorganic carbon (DIC) in the ocean, including estimates of the exchange of carbon dioxide (CO2) between the ocean and the atmosphere, in cooperation with the World Ocean Circulation Experiment (WOCE). This report describes the principal achievements of JGOFS in ocean observations, technology development and modelling. The study has produced a comprehensive and high-quality database of measurements of ocean biogeochemical properties. Data on temporal and spatial changes in primary production and CO2 exchange, the dynamics of of marine food webs, and the availability of micronutrients have yielded new insights into what governs ocean productivity, carbon cycling and export into the deep ocean, the set of processes collectively known as the "biological pump." With large-scale, high-quality data sets for the partial pressure of CO2 in surface waters as well for other DIC parameters in the ocean and trace gases in the atmosphere, reliable estimates, maps and simulations of air-sea gas flux, anthropogenic carbon and inorganic carbon export are now available. JGOFS scientists have also obtained new insights into the export flux of particulate and dissolved organic carbon (POC and DOG), the variations that occur in the ratio of elements in organic matter, and the utilization and remineralization of organic matter as it falls through the ocean interior to the sediments. JGOFS scientists have amassed long-term data on temporal variability in the exchange of CO2 between the ocean and atmosphere, ecosystem dynamics, and carbon export in the oligotrophic subtropical gyres. They have documented strong links between these variables and large-scale climate patterns such as the El Nino-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). An increase in the abundance of organisms that fix free nitrogen (N-2) and a shift in nutrient limitation from nitrogen to phosphorus in the subtropical North Pacific provide evidence of the effects of a decade of strong El Ninos on ecosystem structure and nutrient dynamics. High-quality data sets, including ocean-color observations from satellites, have helped modellers make great strides in their ability to simulate the biogeochemical and physical constraints on the ocean carbon cycle and to extend their results from the local to the regional and global scales. Ocean carbon-cycle models, when coupled to atmospheric and terrestrial models, will make it possible in the future to predict ways in which land and ocean ecosystems might respond to changes in climate
    corecore